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Abstract—Nanotechnology is the process that develops novel 

materials at size of 100 nm or less and has become one of the 

most promising areas of human endeavor. Because of their 

intrinsic properties, nano-particles are commonly employed 

in electronics, photovoltaic, catalysis, environmental and 

space engineering, cosmetic industry and even in medicine 

and pharmacy. However, recent toxicological studies have 

shown evident toxicity of some nano-particles to living 

organisms (toxicity), and their potentially negative impact 

on environmental ecosystems (ecotoxicity). Characterization 

is the connection between an abstract material model and its 

real world behavior. Until recently, relatively simple testing 

procedures are available for the characterization of 

engineering materials. However, the large number of 

nanoparticles and the variety of their characteristics 

including sizes and coatings show that it is only rational to 

develop an approach that avoids testing every single 

nanoparticle produced. The modeling of the material is 

becoming increasingly difficult and complex such that it 

requires the use of complex numerical models. A trend is 

being established where characterization is accomplished 

through a combination of numerical modeling and 

experimental testing. Several researchers have carried out 

analytical and numerical studies on modeling of materials 

but failed to give a simple model to predict the physico-

chemical properties of nano-materials. Computational 

intelligent techniques such as artificial neural network 

(ANN), fuzzy logic, genetic algorithm and support vector 

machine (SVM) are successfully used to solve complex 

problems. In this paper, a hybrid genetic algorithm tuned 

support vector machine classifier (GA-SVMC) model is 

developed to predict the toxicity of nano-materials. 
 

Index Terms—nanotecnology, nanomaterials, support vector 

machines, genetic algorithm, toxicity, characterization 

 

I. INTRODUCTION 

The term “nanotechnology” covers processes 

associated with the creation and utilization of structures 

in the 1 nanometer (nm) to 100nm range. Nanofabrication 

involves engineering at the atomic length scale. 

Engineering at this scale makes it feasible to create, atom 

by atom, fibers which are very small in diameter but 

extremely strong. In the health care domain, 

nanofabrication can be utilized to fabricate extremely 

minute probes that can detect disease by examining 
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individual strands of DNA. Nanofabrication makes it 

possible to manufacture capillary systems for providing 

nutrients to man-made replacement organs. The unique 

properties of these [nanotechnology] materials are a 

double edged sword because they can be tailored for 

beneficial properties and at the time may also have 

unknown consequences, such as new toxicological and 

environmental effects. The following examples illustrate 

how the same nanotechnology material may be both 

potentially beneficial and potentially harmful to human 

health and environment. 

Nanoscale silver is highly effective as an antibacterial 

agent in wound dressings, clothing, and washing 

machines, but there are general concerns that widespread 

dispersion of nanoscale silver in the environment could 

kill microbes that are vital to waste water treatment plants 

and to ecosystems. Some beneficial bacteria, for example, 

break down organic matter, remove nitrogen from water, 

aid in animal digestion, protect against fungal infestations, 

and even aid some animals in defense against predators 

[1]-[3]. 

Due to size of nanoscale particles they may have the 

potential to penetrate the blood-brain barrier, a structure 

that protects the brain from harmful substances in the 

blood but also are such that they may affect the delivery 

of therapeutic agents. The characteristics of certain 

nanoscale materials may assist the development of 

pharmaceuticals to purposefully and beneficially cross 

this barrier and deliver medicine directly to the brain to 

treat, for example, a brain tumor. The harmful aspect, 

however, is the possibility of nanoscale particles to 

unintentionally pass through the blood-brain barrier 

causing harm to humans and animals [1]-[3]. 

It is also generally believed that certain nanoscale 

materials are highly chemically reactive due to their high 

surface-to-volume ratio. This is a property which could 

be positively applied in catalysis, treatment of 

groundwater contamination, and site remediation. This 

property which is also being explored for use in 

protective masks and clothing as defense against 

chemical and biological agents can potentially result in 

cell damage in animals. 
Carbon nanotubes (CNTs) despite potential uses in a 

wide range of applications (e.g., materials, batteries, 

memory devices, electronic displays, transparent 

conductors, sensors, medical imaging), can exhibit 
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properties similar to asbestos fibers and might become 

lodged in organs (e.g., lungs, kidneys, livers), harming 

humans and animals [1]-[3]. 

Considering the Environmental, Health, Safety (EHS) 

issues, nanomaterials play decisive roles in their 

distribution through environment, ecosystem and human 

body. Due to their biological activities/or unique 

properties they may gain access into human body through 

the main ports of entry such as the skin, lungs, 

gastrointestinal tract. Several toxicological studies have 

reported that nanomaterials can be cytotoxic, neurotoxic, 

genotoxic and ecotoxic [4]. 

These apprehensions of the potential EHS effects of 

nanomaterials constitute serious barrier to 

nanotechnology transfer towards business perspectives. It 

is quite obvious that the current body of knowledge of 

how nanoscale materials might affect humans and the 

environment is insufficient to assess, address, and 

manage the potential risks. While there is agreement on 

the need for more EHS research, there are differing views 

on the level of funding required, how it should be 

managed, and related issues. To accomplish this, there is 

need to develop sensitive analytical methodologies, tools 

and an acceptable protocol for screening, characterization 

and monitoring of nanomaterials in the work place, 

laboratory, homes and environment. Therefore, 

considering the EHS issues there is serious need to 

develop and design predictive models for nanomaterials 

toxicity using computational intelligent systems 

(Artificial neural network, neuro-fuzzy systems, hybrid 

support vector machines and fuzzy inference systems). 

The objective is to develop computational/predictive 

model used to establish knowledge domains, risk 

modeling and nano-informatics capabilities to reliably 

assist decision making. 
Therefore, in order to accomplish this, the following 

are necessary: 

 Development of computational intelligent 

predictive models for nanomaterials toxicity. 

 Development of standardized methods, risk 

evaluation, risk assessment and management 

protocol. 

 Information sharing, common database for 

research that uses standard protocols to generate 

knowledge 

Recent advances in machine learning methods have 

provided attractive alternatives for constructing 

interpretation models of complex nanomaterials. Here, 

Support Vector Machines (SVMs), a class of a learning 

machine that is formulated to output regression models 

and classifiers of competitive generalization capability, 

has been explored to determine its capabilities for 

determining the relationship, both in regression and 

classification, between physicochemical properties and 

human health effect which is the main focus. This paper 

will therefore focus on the capability of SVMs to model 

physicochemical properties and toxic effect of 

nanomaterials [4]. 
Specifically, the capabilities of GA tuned SVM 

regression and classification will be examined for 

appropriate prediction purposes on the beneficial and 

toxic effects of specific nano-particles. 

Section I gives a brief introduction. Section II 

highlights the existing computational model approach for 

nanomaterial characterization. Section III describes the 

proposed SVM technique and approach for estimating the 

optimal SVM parameter settings. In Section IV, detailed 

numerical data for training and testing the model. 

SectionV discusses the results of the study. Section VI 

highlights the conclusion of the study and Section VII 

presents the software developed for this study. 

II. EXISTING MODELS 

The existing models for the characterization of 

nanomaterials that could address this problem and find 

possible solution include Quantitative Structure-Activity 

Relationship (QSAR), Numerical techniques (finite 

Element, Classical Laminated theory) and Atomistic, 

Molecular Methods. 

A. QSAR Methodology 

QSAR methodology is a quantitative or qualitative 

relationship between the chemical structure and the 

biological activity being modeled. The property being 

modeled is called end point while the form of relationship 

is called the algorithm. QSAR has been mainly developed 

for small organic compounds with diverse structural types 

[5]. 

The basic requirements to develop a QSAR are (i) 

large dataset that provides experimental values of a 

biological activity/property for a group of chemicals and 

(ii) Molecular structure and/or property data. 

B. Finite Element Methods 

Finite element methods (FEM) have been used for a 

wide variety of applications including problems in 

mechanical, biological, and geological systems. The FEM 

objective is to provide a numerical, approximate solution 

to initial-value and boundary-value problems including 

time-dependent processes. The method uses a variational 

technique for solving the differential equations wherein 

the continuous problem described by the differential 

equation is transformed into the equivalent simultaneous 

equations and the solution is found solving the systems of 

linear equations [6]. In the FEM, the physical structure of 

the domain of interest is broken into simple sub-domains 

(elements) that are interconnected and stiffness is derived 

for each element. Global stiffness matrix is obtained and 

solved subject to initial and boundary values. 

C. Atomistic, Molecular Methods 

At the atomistic or molecular level, the applicable 

methods are molecular mechanics, molecular dynamics, 

and coarse-grained, Monte-Carlo simulation. Molecular 

models encompassing thousands and perhaps millions of 

atoms can be solved by these methods and used to predict 

fundamental, molecular level material behavior [7]. The 

methods exhibit both static and dynamic attributes. For 

example, molecular mechanics can establish the 

minimum-energy structure statically and molecular 

dynamics can resolve the nanosecond-scale evolution of a 
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molecule or molecular assembly. These approaches can 

model both bonded and non-bonded forces (e.g., Van der 

Waals and electrostatic) but cannot explicitly account for 

bond cleavage. 

III. GENETIC ALGORITHM TUNED SUPPORT VECTOR 

MACHINE CLASSIFICATION 

A. Overview of Support Vector Machines 

Vapnik [8] proposed the support vector machines 

(SVMs) which was based on statistical learning theory. 

The basic principles of support vector machines is to map 

the original data x into a feature space with high 

dimensionality through a non-linear mapping function 

and construct hyper plane in new space. The problem of 

classification can be represented as follows. Given a set 

of input-output pairs Z = {(x1, y1), (x2, y2), ..., (xℓ, yℓ)}, 

construct a classifier function f that maps the input 

vectors x € X onto labels y € Y . In binary classification 

the set of labels is simply Y = {−1, 1}. The goal is to find 

a classifier f ∈  F which will correctly classify new 

examples (x, y), i.e. f(x) = y for examples (x, y), which 

were generated under the same probability distribution as 

the data [9]-[11] Binary classification is frequently 

performed by finding a hyper-plane that separates the 

data, e.g. Linear Discriminant Analysis (LDA. There are 

two main issues to consider when we use a separating 

hyper-plane: 

 The problem of learning this hyperplane is an ill-

posed one because there is no unique solution and 

many solutions may not generalize well to the 

unseen examples. 

 The data might not be linearly separable. 

SVMs tackle the first problem by finding the hyper-

plane that realizes the maximum margin of separation 

between the classes. [12] A representation of the hyper-

plane solution used to classify a new sample xi is: 

Y = f(x) = wi(x) + b                       (1) 

where wi, (x) is the dot-product of the weight vector w 

and the input sample, and b is a bias value. The value of 

each element of w can be viewed as a measure of the 

relative importance of each of the sample attributes for 

the classification of a sample. It has been shown that the 

optimal hyperplane can be uniquely constructed by 

solving the following constrained quadratic optimization 

problem [2] 

              (2a) 

subject to yi(||w||+ b) ≥ 1 − ξi, i = 1, ..., ℓ 

ξi≥0, i=1, ..., ℓ                        (2b) 

In linearly separable problem, the solution minimizes 

the norm of the vector w which increases the flatness (or 

reduces the complexity) of the resulting model and 

thereby improves its generalization ability. With non-

linearly separable hard-margin optimization, the goal is 

simply to find the minimum ||w|| such that the hyper-

plane f(x) successfully separates all ℓ samples of the 

training data. The slack variables ξi are introduced to 

allow for finding a hyper-plane that misclassifies some of 

the samples (soft-margin optimization) because many 

datasets are not linearly separable. The complexity 

constant C>0 determines the trade-off between the 

flatness and the amount by which misclassified samples 

are tolerated. A higher value of C means that more 

importance is attached to minimizing the slack variables 

than to minimizing ||w||. Instead of solving this problem 

in its primal form of (2a) and (2b), it can be more easily 

solved in its dual formulation by introducing Langrangian 

multiplier α [12]: 

   (3a) 

Subject to C≥αi≥0, 

                            (3b) 

In this solution, instead of finding w and b the goal 

now is find the vector α and bias value b, where each αi 

represents the relative importance of a training sample I 

in the classification of a new sample. To classify a new 

sample, the quantity 

f(x) is calculated as: 

                   (4) 

where b is chosen so that yif(x) = 1 for any i with C>αi>0. 

Then, a new sample xs is classed as negative if f(xs) is 

less than zero and positive if f(xs) is greater than or equal 

to zero. Samples xi for which the corresponding αi are 

non-zero are known as support vectors since they lie 

closest to the separating hyper-plane. Samples that are not 

support vectors have no influence on the decision 

function. Training an SVM entails solving the quadratic 

programming problem of (3a) and (3b). There are many 

standard techniques that could be applied to SVMs, 

including the Newton method, conjugate gradient and 

primal-dual interior-point methods. For the experiments 

reported here the SVM implementation uses the 

Sequential Minimal [13]. One key aspect of the SVM 

model is that the data enters the above expressions (3a 

and 4) only in the form of the dot product of pairs. This 

leads to the resolution of the second problem mentioned 

above, namely that of non-linearly separable data. The 

basic idea with SVMs is to map the training data into a 

higher dimensional feature space via some mapping φ(x) 

and construct a separating hyperplane with maximum 

margin. This yields a non-linear decision boundary in the 

original input space. By use of a kernel function, K(x, z) = 

〈φ(x), φ(z)〉it is possible to compute the separating 

hyperplane without explicitly carrying out the mapping 

into feature space. [12] Typical types of kernels are: 

 Linear Kernel: K(x, z) = 〈x, z〉 
 Polynomial Kernel: K(x, z) = (〈x, z〉)d

 

 RBF Kernel: K(x, z) = exp(−||x−z||
2
/2σ2) 

 Sigmoid Kernel: K(x, z) = tanh(γ*〈x, z 〉− θ) 

This condition ensures that the solution of (3a) and (3b) 

produces a global optimum. The functions that satisfy 

Mercer’s conditions can be as kernel functions. 
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B. Genetic Programming for Selecting SVM Parameters 

Support vector machine (SVM), which is a statistical 

learning theory based machine learning method, is 

gaining popularity due to its many attractive features and 

promising generalization performance. Some prominent 

features of SVM are: (i) the ability to model non-linear 

relationships, (ii) SVM generalization performance does 

not depend on the dimensionality of the input space, (iii) 

the regression function is related to a quadratic 

programming problem whose solution is global and in 

general unique. Apart from these features, SVM also has 

a drawback that limits the use of SVM on academic and 

industrial platforms: there are free parameters (SVM 

hyper-parameters and SVM kernel parameters) that need 

to be defined by the user. Since the quality of SVM 

regression models depends on a proper setting of these 

parameters, the main issue when we use SVM is how to 

set these parameter values (to ensure good generalization 

performance) for a given training data set. The existing 

approaches to setting SVM parameters and a practical 

method for selecting the values of C (the regularization 

parameter) and ε (the radius of the insensitive tube) are 

summarized [14], [15]. However, all these approaches 

(including the one proposed in [14], [15] are formed on 

the basis of prior knowledge, user expertise, or 

experimental trial, and hence there is no assurance that 

the parameter values obtained are truly optimal. On the 

other hand, further complication on the optimal parameter 

selection arises through the fact that the SVM 

generalization performance depends on all of these 

parameters (both hyper-parameters and kernel parameters) 

together. This means that the interaction of SVM 

parameters has to be considered jointly, and that a 

separate optimization of each parameter is not adequate 

enough to find the optimal regression model [16]. In view 

of the above, in the practical application of SVM 

regression, usually a time-consuming grid search method 

is invoked to estimate the optimal SVM parameter 

settings [17]. When applying grid search method, one 

might need to increase the parameter range and / or 

decrease the step size to increase the accuracy of the 

optimal solution. However, this will result in a 

cumbersome time consuming search process. The GA 

typically starts off with a random population of 

individuals, each encoding a function or expression. This 

population is evolved by selecting better individuals for 

recombination and using their offspring to create a new 

population (generation). Mutation is employed to 

encourage discovery of new individuals. This process is 

continued until some stopping criteria is met, e.g. 

homogeneity of the population. 
The approach presented here combines the two 

techniques of SVMs and GP, using the GP to select 

parameters for a SVM. The algorithm is based on the 

principle of survival of the fittest which tends to retain 

information from generation to generation [18]. In this 

paper genetic algorithm is used to search for better 

combination of C, ε and kernel (d and ) parameters to 

maximize the generalization performance of SVM 

models. An overview of the proposed GK SVM is shown 

in Fig. 1. 

 

Figure1.  GA-SVM Procedure 

The main steps in the building of a GA are: 

 Create a random population of chromosomes 

generated randomly. 

 Evaluate the fitness of each individual by building 

an SVM and test it on the training data 

The fitness function= , where N is the 

total nuber of data, d is the actual value and yi is the 

predicted values. 

 Select the two parent chromosomes from 

population according to fitness function. The 

roulette principle is used for selection. 

 Crossover: Here using crossover probability, 

crossover of parents is done to form new offspring 

(children). In crossover, chromosomes are paired 

randomly. 

 Perform random mutation on the newly created 

offspring 

 Replace the old population with the offspring 

 Repeat Steps 2 to 5 until the population has 

converged 

 Build final SVM using the fittest chromosome 

found 

IV. NUMERICAL EXPERIMENTS 

Prediction performance of the resulting models 

depends on the size and quality of the training data. Each 
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data record consists of input and output data. Input data 

are derived from physicochemical properties of the 

materials as shown in Table I. 

TABLE I.  NANOMATERIALS PHYSICOCHEMICAL PROPERTIES 

Measured Attribute Toxicity potential index Score 

Size characteristics X1 average particle size 
X2 aggregate size 

15 
10 

Surface area and charge 

characteristics 

X3 surface area 

X4 specific surface area 
X5 surface charge 

X6 hydrophobicity 

X7 point of zero change 
X8 zeta potential 

3 

2 
8 

5 

2 
5 

Chemical composition 

structure 

X9 aspect ratio 

X10 bulk density 

15 

10 

Reactivity 
characteristics 

X11 degradability 
X12 hydrolysis rate 

X13 biodegradation rate 
X14 photolysis rate 

X15 Redox reaction rate 

9 
6 

3 
4 

3 

Partitioning 
characteristics 

X16 solubility 
X17 volatility 

X18 partition coefficient 

12 
6 

7 

A. Purpose of Study 

The objective of this study is to classify the 

nanomaterials toxicity based on size, surface area and 

charge, chemical composition structure, reactivity and 

partitioning characteristics. The flow chart for 

nanomaterial characterization/classification is as shown 

in Fig. 2. 

 

Figure 2.  Flow chart of the nanomaterial classification/characterization 

B. Data Sets 

The data of this study were adopted to represent 

different species of a nanomaterial. 20 experimental 

samples, 25 samples for testing data random select from 

database. 

C. Nanomaterials Toxicity Potential Indicators 

In this study, using size, surface area and charge, 

chemical composition structure, reactivity and 

partitioning characteristics are measured attributes. There 

are 15 measure indexes (as in Table I). Table I shows 

nanomaterials toxicity potential indicators. 

D. Process 

Step1: Data preprocess and variable selection 

In this study, the measured attribute are size, surface 

area and charge, chemical composition structure, 

reactivity and partitioning characteristics. Table I is 

showed as toxicity potential index. From the Table I, the 

measured attributes values of each listed nano-material 

are (X1*15+X2*10)/25 in size characteristics, 

(X3*3+X4*2+X5*8+X6*5+X7*2+X8*5)/25 in surface area 

and charge characteristics, (X9*15+X10*10)/25 in 

chemical composition structure 

(X11*9+X12*6+X13*3+X14*4+X15*3)/25 in reactivity 

characteristics and (X16*12+X17*6+X18*7)/25 in 

partitioning characteristics. Table II is denoted as the 

grade of measured attributes (pretreatment training data). 

Step 2: Sample data processing 

In this study, 15 toxicity potential indexes were used, 

and select 20 training sample data, 25 testing sample data 

from listed species of a nanomaterial. The training 

experiments were conducted on a small data set. 

According to Table I, we have the grade of measured 

attributes. The measured attributes are size, surface area 

and charge, chemical composition structure, reactivity 

and partitioning characteristics, y is sample data decision 

attribute. If listed nanomaterial is toxic (T) then y is 1, 

and otherwise y is -1 

Step 3: Solve the nanomaterial toxicity evaluation 

problem 

In Computational Intelligent Nanomaterials Toxicity 

(CINT) software (developed by the author), genetic 

algorithm was used to find the best parameter C and 

kernel parameters. 

The result confirmed that the classification precision of 

the SVM with radial function (RBF) kernel function was 

high as 100% when  and C where 0.55 and 1. Then the 

best parameter of C and  was selected to train the whole 

training set, we have 11 support vector index sets. 

The outputs from NCIS software are 

Accuracy=100% 

MSE=0.0 

Squared correlation coefficient=1 

V. RESULTS AND DISCUSSION 

The sample data used for testing are as shown in Table 

III. There are two types of errors namely Type I and Type 
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II errors. Type I refers to a situation when toxic material 

is classified as non- toxic material. Type II refers to non- 

toxic material being classified as toxic material. The 

predicted result is as listed in Table III. The results of 

testing (external validation check were summarized in 

Table IV. We observe form these results that the hybrid 

genetic algorithm-support vector machines modeling 

scheme performs satisfactorily for predictive correlations. 

The proposed model shows a high accuracy in predicting 

toxicity class with a stable performance, and achieved the 

lowest absolute percent relative error typeI and typeII 

errors, lowest root mean square error, and the highest 

correlation coefficient among other correlations for the 

used two distinct data sets. The interface for data input 

for SVM implementation is as shown in Fig. 3. A plot of 

the experimental and predicted data versus the input data 

is as shown in Fig. 4. 

TABLE II.  NANOMATERIALS TRAINING DATASET 

Listed species of a 
nanomaterial 

Size 
characteristics 

Surface area and 
charge characteristics 

Chemical 
composition structure  

Reactivity 
characteristics 

Partitioning 
characteristics 

Attribute 
of y 

1 0.23 0.20 0.09 0.20 0.22 -1 

2 0.18 0.18 0.10 0.21 0.23 -1 

3 0.16 0.18 0.08 0.17 0.18 -1 

4 0.19 0.11 0.12 0.18 0.16 -1 

5 0.20 0.22 0.11 0.19 0.20 -1 

6 0.24 0.2 0.09 0.20 0.23 -1 

7 0.23 0.14 0.06 0.20 0.21 -1 

8 0.20 0.08 0.07 0.10 0.12 1 

9 0.18 0.09 0.05 0.18 0.15 1 

10 0.19 0.12 0.03 0.12 0.13 1 

11 0.22 0.13 0.04 0.15 0.15 -1 

12 0.16 0.10 0.07 0.14 0.13 1 

13 0.19 0.09 0.11 0.12 0.15 1 

14 0.15 0.18 0.16 0.10 0.13 -1 

15 0.18 0.20 0.20 0.08 0.07 -1 

16 0.12 0.17 0.18 0.13 0.15 -1 

17 0.21 0.18 0.10 0.12 0.10 -1 

18 0.19 0.18 0.12 0.09 0.08 -1 

19 0.22 0.19 0.09 0.14 0.15 -1 

20 0.20 0.15 0.15 0.09 0.08 -1 

TABLE III.  TEST SAMPLE DATA 

Listed species of a 

nanomaterial 

Size 

characteristics 

Surface area and 

charge characteristics 

Chemical 

composition structure 

Reactivity 

characteristics 

Partitioning 

characteristics 

Attribute 

of y 

1 0.22 0.22 0.20 0.10 0.20 -1 

2 0.21 0.20 0.18 0.10 0.21 -1 

3 0.17 0.16 0.20 0.08 0.17 -1 

4 0.18 0.19 0.15 0.12 0.18 -1 

5 0.22 0.20 0.22 0.20 0.19 -1 

6 0.21 0.22 0.20 0.09 0.20 -1 

7 0.22 0.23 0.18 0.06 0.20 -1 

8 0.24 0.20 0.08 0.09 0.10 1 

9 0.19 0.18 0.12 0.05 0.11 1 

10 0.18 0.19 0.15 0.03 0.12 1 

11 0.20 0.22 0.13 0.08 0.15 -1 

12 0.19 0.18 0.10 0.07 0.14 1 

13 0.20 0.19 0.09 0.12 0.12 1 

14 0.17 0.16 0.18 0.16 0.10 -1 

15 0.17 0.18 0.22 0.20 0.08 -1 

16 0.13 0.12 0.17 0.18 0.15 -1 

17 0.27 0.21 0.18 0.12 0.12 1 

18 0.18 0.19 0.20 0.12 0.10 -1 

19 0.20 0.22 0.15 0.09 0.14 -1 

20 0.23 0.21 0.15 0.18 0.10 -1 

21 0.22 0.20 0.13 0.09 0.15 -1 

22 0.19 0.18 0.15 0.07 0.18 1 

23 0.17 0.16 0.10 0.12 0.14 1 

24 0.18 0.19 0.18 0.16 0.18 -1 

25 0.17 0.16 0.20 0.20 0.09 -1 
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TABLE IV.  TOXICITY PREDICTION RESULTS 

Method Number 
of 

samples 

Type 
I 

error 

TypeII 
error 

Error Accuracy 

GA-
SVM 

11 0% 0% 0 100% 

 

7.0 Software Implementation 

 

Figure 3.  Data input for SVM implementation 

 

Figure 4.  Plot of Calculated and experimental data versus input data 

VI. CONCLUSION 

This study develops a novel model to search the 

optimal values of SVM parameters, to increase the 

accuracy of prediction and ability of generalization of 

SVM and the proposed model (GA-SVM) were applied 

to a dataset on nanomaterial toxicity. First, this study 

found that the GA yields different optimal values of the 

parameters of SVM given various datasets. The 

classification of nanomaterial (toxic or non toxic) using 

GA-Support Vector Machines is a work that is aimed to 

start with an in-depth study and understanding of the 

various aspects of Support Vector Machines (SVM) and 

Genetic Algorithm, which is used widely for 

classification and regression purposes. The study and 

understanding of the SVM technique and its role in 

classification tasks are done. The classification process 

follows supervised learning model, in which the available 

or known data is used to train the model based on 

similarity measures. With the trained model, the unseen 

or new data is classified into either of the classes. The 

non-linear input space is handled using Gaussian kernel 

function, which is chosen for this application. This 

technique is then implemented in the Microsoft C# 

programming language to perform data classification task 

for the nanomaterial toxicity data set. This approach is 

rather less complex than the traditional computational 

modeling used for material classification and 

characterization. 
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