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Abstract: Photocatalytic performance of titanium oxide (TiO2) was boost up by preparing TiO2/ reduced 

graphene oxide (TiO2/ GR) composites using sol–gel method. These composites were characterized by X-ray 

diffraction, Raman and UV-Visible spectroscopy. The photocatalytic activity of photocatalyst was examined 

by the recording the degradation of methyl orange (MO) dye under UV irradiation. It was found that 

degradation was 1.67 times faster for TiO2/ GR (200mg) catalyst as compared to pure TiO2. The 

photocatalytic activities of different phases of TiO2 were also studied and results revealed that the 

degradation was faster in anatase phase of TiO2 as compared to rutile phase. UV–Visible spectra showed 

that the increase in catalyst loading raise the degradation of MO up to a certain limit. 
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1. Introduction 

Rapid growth of industries in the world has increase the pollutants in the water such as heavy metals in 

ground water [1], various types of dyes [2], inorganic & organic waste materials. Among these pollutants, 

dyes are harmful and difficult to remove because of aromatic and heterocyclic structures.  These types of 

wastes decrease the oxygen level in water (< 6ppm) and hence prove very harmful for aquatic animals and 

plants. Different physical, biological and chemical conventional methods [3]-[5] are inefficient to remove 

dyes from water. Currently, adsorption using adsorbants has become interesting method for the removal of 

dyes from water because of its low cost and high efficiency. Lots of work have been carried out using metal 

oxides such as Titanium dioxide (TiO2) [6], [7], Zirconium oxide (ZrO2) [8], Iron oxide [6]-[9] and ZnO [10] 

due to their photocatalytic properties. Among these, TiO2 as adsorbents is best due to its non-toxicity, strong 

oxidizing and reducing power [11], stability, water insolubility [12], [13] and most importantly 

semiconductor behavior [14], [15].  

Different methods have been used to improve photocatalytic properties of TiO2 including ion doping for 

the degradation of 4-nitrophenol [16], adding a coadsorbent such as ZrO2 to increase the adsorption 

efficiency [8], TiO2/ carbon nanotube composite [14], [17], [18], magnetic TiO2/ graphene composite for 

removal of herbicides [14], [19], TiO2/ CuO2 composite to eliminate color from water [20] etc. As per 

267

International Journal of Materials Science and Engineering

Volume 3, Number 4, December 2015

doi: 10.17706/ijmse.2015.3.4.267-278



  

literature, work on dye removal from water using TiO2/ graphene composite synthesized by sol gel 

technique has been still in progress. Looking at these observations and focusing on graphene based 

materials [21], the present work is directed towards the removal of methyl orange (MO) dye from water 

using a coadsorbent. 

TiO2 exists in anatase and rutile phase. Anatase phase possess more photocatalytic activity [15] due to its 

bandgap (Eg anatase>Eg rutile). But its applications in dye removal at large scale are limited because of quick 

recombination of electron hole pair and low absorption of UV light. So, a suitable adsorbent which help in 

absorption of light is required to enhance its photocatalytic properties. Graphene is suitable for this 

purpose due to its large specific surface area, good electrical and optical properties [22], [23]. It acts as a 

promoter in photocatalytic reaction by capturing the electron in between the reaction so that electron hole 

pair recombination can be minimized [24]. Thus, graphene not only support the TiO2 nanoparticles but also 

help in absorption of light due to its larger surface area [25], [26]. In previous work, we studied the effect of 

graphene in enhancing photocatalytic properties of ZrO2 [21]. The work has been extended to TiO2 

nanoparticles due to its small band gap and good photocatalytic activity towards light compared to ZrO2. 

In the present work, TiO2/ reduced graphene oxide (TiO2/ GR) catalysts prepared by sol-gel method were 

used for the study of its photocatalytic activity for removal of MO dye in the presence UV light by increasing 

absorption of light and decreasing electron hole recombination. 

2. Experimental 

2.1. Materials 

Graphite powder (purity 99.99%), sodium nitrate (99.0%), sulphuric acid, potassium permanganate 

(99%), hydrogen peroxide and hydrochloric acid were purchased from Rankem RFCL Pvt. Ltd., India. 

Titanium tetra isopropoxide (TTIP) was obtained from Sigma Aldrich. Ethanol, MO was purchased from s-d 

fine- chem. Limited Mumbai, India. 

2.2. Synthesis of Graphene Oxide 

Graphene oxide (GO) was synthesized by Hummers method. Graphite (2 g), NaNO3 (1 g) were mixed in 

cooled concentrated sulphuric acid (46 ml) under stirring in ice bath. KMnO4 (6 g) was gradually added to 

the above placed mixture with stirring and cooling so that the temperature of mixture was maintained 

between 10–15°C [19], [21]. The reaction mixture was then stirred at 40°C for 30 minutes. Subsequently, 80 

ml of high purity water added to the formed paste, followed by another 90 minutes stirring at 90°C. 

Successively, to stop the oxidation reaction additional 200 ml water was added. 6 ml of 30% H2O2 was 

added in above mixture sequentially to destroy the excess KMnO4. The complete removal of KMnO4 was 

indicated by color change in to yellow. Sometimes color of the solution was yellow before addition of H2O2 

which indicated complete reduction of KMnO4. The solution was then washed with HCl (10%) to remove 

sulphate. Subsequently it was filtered and washed several times with DI water. The filtered paste was 

dissolved in 100 ml DI water. The solution was ultrasonicated for 1 hour and centrifuged for 20 minutes at 

4000rpm. GO powder thus obtained was collected and dried at room temperature. 

2.3. Synthesis of TiO2 

TiO2 nanoparticles have been synthesized from TTIP using sol gel method. TTIP (16 ml) was mixed with 

ethanol (27.6 ml) and acetic acid (318 µl) and continuously stirred for 1½  hours at 90°C in dark 

environment. The obtained sol was clear, homogenous with yellowish appearance and was kept for 24 

hours in dark. After that it was dried in oven at 100˚C for one day. The obtained TiO2 powder was annealed 

at 500˚C, 800˚C named as T5 and T8 respectively. 
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2.4. Synthesis of TiO2/ GR Catalyst 

The TiO2 and GO act as a starting material for synthesis of TiO2/ GR composite. T5 (1.08 g, 0.135 mol) was 

dispersed in ethanol (100 ml) and GO (100 mg) was dispersed in DI water (10 ml) by sonication for 1hour 

respectively. Subsequently, both solutions were mixed and refluxed for 36 hours by addition of 0.1 ml of 

hydrazine hydrate and HCl. HCl modifies the surface of TiO2 so that they get attached to GO sheet. Further, 

GO get reduced to GR by hydrazine hydrate (act as reducing agent for GO). The resulting nanocomposite (T5a) 

were collected by centrifuge and dried in oven at 60˚C overnight. 

Similar method was used to prepare other TiO2/ GR (T5b and T5c) catalyst by fixing the amount of TiO2 

and using 133mg and 200mg of GO respectively. Similarly TiO2/ GR composite prepared from T8 are named 

as T8a, T8b, T8c having 100mg, 133mg and 200mg GO respectively. 

2.5. Experimental Procedure for Degradation Studies: 

A 500 ml solution of MO (4 mg) was prepared in water and 1ppm of H2O2 was added into it to remove 

extra electron generated during reaction. T5 (30 mg) was added to the 100 ml of the solution of MO. The 

reaction temperature was maintained at room temperature for all the experimental trials. The solution was 

kept under UV wavelength and small amount of solution was withdrawn from the reaction mixture at 

regular intervals and analyzed using UV spectrophotometer. The experiment was repeated with other TiO2 

and TiO2/ GR samples and also, by adding varying amount (30 mg, 50 mg, 100 mg and 150 mg) in the 

solution of MO. 

3. Results and Discussions 

The crystal structure of the resulting products were characterized by X-ray power diffraction 

(XPERT-PRO diffractometer (45 kV, 40 mA) equipped with a Giono-meter PW3050/60 working with Cu Kα 

radiation of wavelength 1.5406Å in the 2θ range from 5 to 80°). The band gap of prepared samples and the 

changes in the concentrations of MO in the aqueous solution were examined by absorption spectra 

measured on a UV–Vis absorption spectrophotometer (UV–Vis) (Perkin Elmer, Lamba 650). Raman spectra 

were recorded with a Raman microscope (Renishaw inVia), using a 514 nm wavelength laser having 50% 

power with 2400 l/ mm grating focused through an inverted microscope (Leica), via a 20x objective. 

3.1. Characterization 

3.1.1. XRD analysis  

 

 

Fig. 1. XRD pattern of GO synthesized using Hummer’s method 
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Fig. 1 represents the XRD of graphite, GO and reduced GO. Diffraction peak of graphite observed at 

2θ=26.4° could no longer be detected in GO. While the XRD pattern for GO exhibited a strong and sharp 

peak at 2θ=10.56° corresponding to the (002) indicates that a highly oxidized GO sample has been 

synthesized. Interlayer distance of GO (8.37Ǻ) was greater than graphite (3.36Ǻ). The larger interlayer 

distance of GO might be due to the formation of oxygen-containing functional groups such as hydroxyl, 

epoxy and carboxyl in graphite. In XRD pattern of GR the peak corresponding to GO at 2θ=10.56° is 

completely disappeared. This can be ascribed to the removal of functional groups and may indicate 

complete deoxygenation of GO and exfoliation of GR. 

Fig. 2 (a, b) depicts the XRD pattern of T5, T8 and their TiO2/ GR composites (T5a, T5b, T5c, T8a, T8b and T8c) 

obtained by sol-gel route respectively. The synthesized T5 nanoparticles showed crystalline nature with 2θ 

peaks lying at 25.2°(101), 37.7°(004), 48°(200), 55°(105) corresponding to anatase phase and peak at 

54°(211) for rutile phase respectively. 

T8 nanoparticles displayed peaks at 27.47° (110), 36.09° (101), 41.31° (111), 54.41° (211), 56.64° (220) 

and 69.41° (301) corresponding to rutile phase. The XRD data confirms that TiO2 have anatase phase at 

500°C and rutile at 800°C [14]. Morever, GO peak disappeared in pattern of TiO2/ GR composites (Fig. 2a, b), 

revealing that GO was reduced by hydrazine hydrate during the reaction. Also, the peak corresponding to 

that of graphite was absent in the composites, indicating the decoration of TiO2 onto graphene sheets which 

cause the enlargement and disorder in the layer of graphene. In addition, it is observed that GO in TiO2 does 

not affect the phase of the particles of the composites. 

 

Fig. 2. Phase analysis of (a) TiO2 annealed at 500°C (T5) and TiO2/ GR composite (T5a, T5b and T5c) of 

different concentration showing anatase phase is dominate over rutile phase, (b) TiO2 annealed at 

800 °C (T8) and TiO2/ GR composite (T8a, T8b and T8c) of different concentration showing rutile 

phase is dominate over anatase phase 

 

The powder size was calculated by using Debey Scherrer’s formula  

 

D=Kλ/ (βcosθ) 

 

where D is the crystal size; λ is the wavelength of the X-ray radiation (λ=0.15406 nm) for CuKα; K is usually 

taken as 0.89; β is the line width at half-maximum height and θ is the Bragg angle [27]. The average value of 
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crystallite size obtained using this formula is 7.01 nm and 37.3 nm for T5 and T8, respectively. 

3.1.2. Raman analysis 

The Raman spectrum (Fig. 3) of T8 indicates the presence of crystalline nanoparticles and showed Raman 

bands at 435(Eg) and 600(A1g) for the rutile structure [28] which is in good agreement with the reported 

XRD pattern. In addition to different TiO2 modes, the broad D-band (defect-induced mode) at 1379 cm-1 and 

G band (E2g graphite mode) at 1596 cm-1 were observed in T8b composites shown in Fig. 3.  

 

 
Fig. 3. Raman spectra of T8 and T8b showing peaks corresponding to rutile phase of TiO2 

 

As position of Eg and A1g Raman bands does not changed by the addition of GR confirming that GR 

addition does not affect the phase of TiO2.  

3.1.3. UV-Visible analysis 

Band gap calculation 

The band gap is a crucible parameter to understand the photocatalytic properties of material. The band 

gap can be estimated from UV-Visible spectra. In order to investigate change in the band gap of TiO2 with 

the addition of GR the UV -Visible absorption spectra of T8 and T8c composite was recorded. Tauc plots of T8 

and T8c are shown in Fig. 4, the band gap is calculated using Tauc’s expression [29]: 

 

αhν = A (hν – Eg) n 

 

where α is absorption coefficient, A is a constant which is almost independent of the chemical composition 

of the semiconductor, hν is the photon energy and Eg is the optical band gap, n is 2 for an indirect transition 

and ½  for a direct transition. 

The band gap (Eg) of TiO2 can be estimated from the plot of (αhν)2 versus photon energy (hν) shown in 

Fig. 4. The extrapolated intercept correspond to the band gap energy at 2.98eV for T8 and 3.23eV for T8c. 

The band gap (Eg) estimated for T8 (2.98eV) is in close agreement with the reported value for rutile 
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nanostructures (3.0–3.1eV). With the addition of GR in T8, the band gap increases to 3.23eV resulting in the 

improvement of degradation of MO due to reduced chances of electron hole pair recombination. 

 

 

Fig. 4. Tauc Plot (αhν)2 Versus Photon Energy (hν) of the Synthesized (a) T8 and (b) T8c. 

4. Photo Catalytic Analysis 

Photocatalytic process involves acceleration of the reaction in the presence of catalyst (such as TiO2) 

when photon of energy greater than band gap of catalyst falls on it. The photoexcited electrons react with 

oxygen molecule to form super oxide anion (O2-) and positive hole breaks apart the water molecule to form 

hydrogen gas and hydroxyl radical (OH*).   

The degradation of MO dye using pure and GR doped TiO2 (annealed at 500°C and 800°C) was compared 

by photo catalysis process using UV light. Fig. 5(a) shows the absorbance of MO with time under irradiation 

of UV light using pure TiO2 (annealed at 500°C) as photocatalyst. The absorption peak diminishes with 

increasing irradiation time of UV light indicates the degradation of MO as TiO2 absorb more energy from UV 

light for long exposure time.  

4.1. Effect of Catalyst Loading 

In order to determine the effect of catalysts (TiO2 and TiO2/ GR) on the degradation of MO the 

experiments were carried out with and without catalyst loadings.  

4.1.1. Effect of TiO2 

Effect of TiO2 as catalyst can be easily seen on the degradation of MO, as MO remains unaffected in the 

absence of catalyst. In our experiments, amount of photo catalyst varies from 30 to 150 mg/ 100 ml of the 

dye solution. More interestingly degradation first increases (up to 100 mg catalyst loading of T5 and 50 mg 

catalyst loading for T8) and then decreases for further increase in amount of catalyst. This may be due to 

decrease in light penetration through the solution with increasing dose. Moreover, higher amount of catalyst 

increase the turbidity of the solution. Fig. 5 shows the variation of absorption with time and amount of TiO2 

catalyst loading for T5. 

4.1.2 Effect of annealing temperature 

From Table 1 it is clear that the photo degradation of MO was more for T5 as compared to that for T8. The 

difference in photocatalytic activity was due to particle size and phase. Small crystalline size gives high 

surface area and hence provides more sites for the adsorption of reactive species. As T5 has smaller 

crystalline size and exists in anatase phase which is more photoactive than T8 having larger crystalline size 

which exist in rutile phase (cleared from XRD) [15]. 
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Table 1. Degradation Time of TiO2 (Annealed at 500˚C and 800˚C) and TiO2/ GR Composites 

Concentration 

(mg) 

Degradation time (minutes) 

TiO2 annealed at 500˚C TiO2  annealed at 800˚C 

T5 T5a T5b T5c T8 T8c 

30 73 56 50 48 90 75 

50 54 53 48 44 72 68 

100 46 32 38 30 85 80 

150 50 37 42 40 100 86 

 

4.1.3. Effect of GR  

Furthermore, the effect of GR was studied in the degradation of MO by preparing TiO2/ GR composites. 

The photocatalytic activities of TiO2 was enhanced by addition of GR, as when UV light  falls on TiO2 the 

generated electron were transferred to graphene and the recombination of photo-generated electron-hole 

pairs was reduced. The amount of graphene is important parameter in determining the photocatalytic 

activity of TiO2/ GR composites. Fig. 5 b, c, d show the absorbance spectra of MO with time, under 

irradiation of UV light using T5a, T5b and T5c as photo catalyst.  

 

 

Fig. 5. UV-Visible absorption spectra of degradation of MO with T5, T5a, T5b and T5c w.r.t. time and different 

amount of catalyst loading (30mg, 50mg, 100mg and 150mg) 

 

It has been concluded that the addition of GR enhance the photocatalytic activities of TiO2 as it enhances 

the light absorption due to its higher surface area and promote electron-hole separation [27] during 
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reaction. Also with increasing amount of GR in TiO2 the degr . 5b, 

5c and 5d) as degradation time was minimum (30 minutes) for T5c having greater amount of GR. Similar 

effect was also observed in T8a, T8b and T8c (degradation time for T8c shown in Table 1) although there is 

small effect of GR in this case due to rutile phase of TiO2 at 800°C which does not have good photocatalytic 

properties like anatase phase, as it requires 68 min and 80 min for degradation of MO using T8c as 

compared to much lesser time of 44 min and 30 min using T5c using  50 mg and 100 mg of catalyst loading 

respectively.  

Degradation constant (DC) for reaction at any time can be calculated by equation 

 

%𝐷𝐶 =
𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝐶𝑓𝑖𝑛𝑎𝑙

𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙
∗ 100 

 

where Cinitial is the initial concentration and Cfinal is the concentration of MO at any time. 

The degradation curve of pure and GR doped TiO2 annealed at different temperature are shown in Fig. 6, 

7. It can be observed that degradation is more in T5 (74.2% for 50mg) shown in Fig. 6a as compared to T8 

(66.6% for 50mg) shown in Fig. 7(a). With increasing GR doping in TiO2 degradation also increases up to 

80.25% for 50mg and further it increase to 88.25% with 100mg of T5c catalyst loading (Fig. 6d) in MO 

solution. Fig. 8 shows decolorization of MO dyes is in the presence of 100mg T5a catalyst in 0, 10, 15, 20, 25, 

30, 32 min. 

 

Fig. 6. % Degradation constant curve of TiO2 annealed at 500°C (T5) and TiO2/ GR composite (T5a, T5b and 

T5c) for different concentration in MO solution 

 

Fig. 7. % Degradation constant curve of TiO2 annealed at 800°C (T8) and TiO2/ GR (T8c) composite 
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Fig. 8. Decolourization of MO solution containing T5a (100mg) in 0, 10, 15, 20, 25, 30, 32 min. 

 

5. Conclusion 

The TiO2/ GR composites were successfully prepared using sol gel method and were used to degrade MO 

from the solution. The rate of photo decolorization increases with increase in catalyst dose up to an 

optimum loading after which degradation of MO decreases as higher concentration act as a barrier to 

transferred UV light in the solution. The degradation time as well as degradation rate increases with 

increase in the concentration of GR in TiO2 in the solution. This may be due to that GR efficiently separate 

out the electron hole pair by capturing the electron during reaction. In this work, degradation of MO was 

increased to 88.25% in 30 min with addition of GR as compared to pure TiO2 which degraded to 81.25% in 

46 min. 
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