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Abstract: In this paper, we present and discuss experimental results from a microwave sintering of a mullite 

ceramic, produced from a mixture of alumina and silica xerogel extracted from a sago waste ash. The 

composition has been prepared by adding 60 %wt amount of alumina into the silica xerogel. As a radiation 

source for the microwave heating, a 28 GHz wave gyrotron has been used. The influence of the sintering 

temperature on the structural properties was studied in detail. It has been found that the mixture crystallizes 

completely as a single mullite phase at a temperature of 1600°C after heating for 10 min at a temperature 

rate of 45oC/min. Most importantly, such result cannot be achieved by conventional heating. The results that 

have been obtained in this study allow one to conclude that the microwave sintering of using a 28 GHz 

gyrotron is an appropriate technological process for the production of mullite ceramics and is characterized 

by several advantages such as shorter times of the thermal cycle, lower sintering temperatures and higher 

quality of the final product. 
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1. Introduction 

Mullite is an excellent material and has numerous uses in various industrial structural and functional 

applications due to its unique properties. For example, it has extremely high-temperature stability, thermal 

shock resistance, resistance to chemical attack and abrasion which is useful for its usage as a refractory 

material [1]. The low coefficient of thermal expansion, low density, and low thermal conductivity make 

mullite an appropriate material for the production of optical infrared windows [2]. Additionally, its low 

dielectric constant and conductivity are suitable for fabrication of ceramic substrates for microelectronics 

packaging [3].  

It has already been reported that the formation of mullite in the sample depends on the type of the used 

precursor gel, particle size and the parameters of the thermal treatment process. Preceding studies in 

which both the electric and the microwave heating sources have been used have demonstrated the 

possibility of forming a single crystalline phase of mullite. In order to achieve this, the most important 
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factor is the heating of alumina and silica at sufficiently high temperature. In the case of an electric or 

conventional heating, the formation of single mullite phase in the mixtures of Al(OH)3 and micro silica 

occurs at 1600˚C for 3 h at a heating rate of 3°C/min [4]. The formation of mullite is intense when the 

heating rate in the mixture of clay and alumina source is raised up to 5°C/min [5]. Recently, mullite has 

been prepared using an alumina and silica xerogel from sago waste as starting powder and the complete 

mullitation has been achieved at a temperature of 1600˚C for 2 h and a heating rate of 3°C/min [6]. These 

studies have demonstrated several disadvantages of the used crystallization process, most notably very low 

heating rates and long soaking times during sintering, which promote grain growth. Such problems can be 

solved replacing the conventional heating by a microwave heating.  

Inherent advantages of the microwave sintering are significantly higher heating rates and a volumetric 

heat generation. Additionally, such heating by microwaves significantly diminishes the time for grain growth. 

In a series of preceding experiments, the mullite ceramic has been prepared by a volumetric microwave 

heating using a microwave oven operating at a frequency of 2.45 GHz and the results have been compared 

with the conventional treatment. It has been observed that the mullitization process was completed after 20 

min in a mixture of clay and alumina and after 25 min in bentonite clays [7]. Brasileiro et al. (2012) [8] 

compared the conventional and microwave processing of mullite derived from kaolin residue. They have 

reported a formation of secondary mullite in just 20 min of sintering in a microwave oven (at a frequency of 

2.45 GHz and an output power of 1.44 kW) while the conventional sintering at 1400°C requires a much 

longer time of 280 min. This result is supported by the study of mullite formation in clay and alumina 

composites [9] and kaolinite [10], which shows that the microwave treatment reduces the sintering 

temperature by 120 and 400 degrees, respectively. In their entirety, these results demonstrate the following 

advantages of the microwave sintering: (i) a significant mullite densification; (ii) a more uniform structure 

and increased mechanical strength due to the formation of smaller grains; (iii) an improvement of the 

reaction rate and, eventually, (iv) an improved quality of the mullite ceramic. In this paper, we present the 

results of our study on the structural properties of a mullite ceramic sintered by a microwave heating using a 

gyrotron as a radiation source. 

2. Experimental Procedure 

2.1. Silica Xerogel and -Al2O3 Composite Preparation 

Amorphous silica xerogel (SX) was extracted from a sago waste (solid residue, which is left behind after 

the starch has been washed out) obtained from the sago processing plant in Kendari, Indonesia. The 

extraction procedure is described in detail elsewhere [11], [12]. The composite powder was prepared mixing 

such SX with monosized crystalline -Al2O3 powder having a particle size of 300 nm. The preparation 

procedures of the composite powder are described in the literature [6]. The dried powder and 3 wt% 

polyvinyl alcohol (PVC) were mixed and then pressed at 20 MPa using a hydraulic compaction to form 

cylindrical samples with a diameter of 10 mm and a thickness of 7 mm. The ceramic green body samples 

were dried at 300oC with a drying rate of 1.5oC/min and afterwards were stored in a desiccator for a further 

processing. 

2.2. Sintering of the Green Body of Silica Xerogel and Al2O3 Composite 

The experiments on the green body sintering have been carried out using microwave heating by gyrotron 

radiation with a frequency of 28 GHz [13] to temperatures in the range from 1300 to 1700oC. A controlled 

heating rate of 45oC/min has been maintained up to the desired temperature in the applicator and then the 

temperature has been kept constant for 15 min. The sample holder was made of heat insulating material 

(Fibermax). The temperature was measured using an R-type thermocouple placed in contact with the 
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surface of the sample. The cooling was performed by natural convection after turning the furnace off and 

leaving the samples inside.  

2.3. Methods Used for the Structural Characterization of the Mullite Ceramic 

The identification of the crystalline phases formed during the sintering was performed by XRD in a 

Smartlab X-ray diffractometer, supplemented with primary and secondary monochromators and controlled 

by a computer. The X-ray tube was operated at 40 kV/30 mA with filtered Cu Kα radiation at a wavelength of 

0.15418 nm. The instrument was run in a scan mode with an increment of 0.02 and a scan speed of 5 s/step 

within an angle 2 ranging from 10 to 90 degree. Furthermore, in this study, micrographs were taken in 

order to evaluate the characteristics of the surface of the sintered samples. The surface morphology of the 

sintered samples was then examined in more detail by a scanning electron microscope (SEM) JOEL JSM-6400. 

As the electron beam penetrates the surface of the sample, it produces emission of secondary electrons that 

are collected by detectors. The signal from the detectors is used to register an image of the surface of the 

sample on a monitor. The images were registered at a magnification of 5000 times and an accelerating 

voltage of 15 kV. 

3. Experimental Results and Discussion  

Fig. 1 (i) shows XRD patterns of silica xerogel loaded with 60 wt% -Al2O3 and sintered at different 

temperatures. The spectrum that corresponds to a sintering temperature of 1300oC indicates a presence of 

alumina and mullite phases. The rate of mullite formation follows the same growth path as the sintering 

temperature is increased further to 1400oC and then to 1500oC. Hence, at 1600oC the complete mullite 

phase is formed due to the reaction of -Al2O3 with the residual silica in the mixture. The mullite diffraction 

peaks obtained in the XRD pattern are in good agreement with other reported results [14]. Fig. 1 (ii) shows a 

typical X-ray diffraction pattern of samples after sintering at 1600°C by both conventional and microwave 

heating. It was found that in a conventional furnace, Al2O3 and mullite are the major phases. For samples 

sintered by microwave heating using a 24 GHz gyrotron, Al2O3 peaks were not observed and only a single 

homogeneous crystalline mullite phase is present. This indicates that during the sintering at 1600°C, a 

complete reaction of -Al2O3 and xerogel silica takes place and mullite is formed. By microwave sintering, the 

volumetric interaction of the electromagnetic fields with the ceramic material leads to a higher heating 

efficiency and faster reaction rates when compared with the conventional heating at the same temperature 

[15].   

 

    
                                                          (i)                                                                                      (ii) 

Fig.1. XRD pattern of silica xerogel loaded by 60 wt% -Al2O3 and sintered at (i) different temperature and 

(ii) 1600oC by (a) conventional heating [6], and (b) microwave heating of a 28 GHz gyrotron. 
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Fig. 2 (i) shows SEM images of silica xerogel loaded by 60 wt% -Al2O3 and sintered at different 

temperatures. At a temperature of 1300oC, the microstructure is strongly heterogeneous and is 

characterized by the formation of secondary mullite in the form of small grains. The secondary mullite 

crystals are formed through a solution precipitation mechanism via transient liquid phase [16]. From 1400oC 

to 1500oC, it was observed a similar morphology as at 1300oC. At 1600oC, the grain shapes transform from 

rounded secondary to elongated primary mullite. At this temperature, the higher viscosity of the glass phase 

favors the growth of the crystals and stipulates the transformation of primary to secondary mullite [17]. Fig. 

2 (ii) shows SEM images of fracture surfaces of the two composites, one was sintered at 1600°C in the 

conventional furnace and the other was sintered at 1600°C by microwave heating using a 28 GHz gyrotron. 

The difference in microstructure lies in the difference in grain dimension, depending on the sintering 

conditions. In the case of conventional sintering, small grains appear on the surface of the sample. After 

microwave sintering, the microstructure is characterized by a bigger grain dimension and more elongated 

grains. As the sintering temperature is increased (up to 1600oC), the grains growth continues. 

 

    
                                                   (i)                                                                                          (ii) 

Fig. 2. SEM images of silica xerogel loaded by 60 wt% -Al2O3 and (i) sintered at (a) 1300oC, (b) 1400oC, (c) 

1500oC, and (d) 1600oC, and (ii) 1600oC by (a) conventional heating [6], and (b) microwave heating of a 28 

GHz gyrotron. 

 

4. Conclusion 

A solid-state transformation of a mixture of alumina and silica xerogel into mullite ceramic by microwave 

thermal treatment using a 28 GHz gyrotron as a radiation source has been successfully demonstrated. It has 

been shown that the sintering reaction using a 28 GHz gyrotron enhances significantly the grains growth 

and the crystallization in the silica xerogel. It was found also that a single crystalline mullite phase can be 

formed by microwave heating at a temperature of 1600oC for 10 min at a temperature rate of 45oC/min.    

As a whole, the experimental results obtained in this study demonstrate that the microwave sintering of 

mullite ceramics using a 28 GHz gyrotron has clear advantages compared with the conventional treatment 

and can be considered as an appropriate technology for an industrial production of such materials. 
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