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Abstract: Formation and growth of tetrabutylphosphonium acetate (TBPAce) hydrate was observed. This 

study was performed at the mass fraction 0.35 and 0.42. The crystal growth was observed respectively at 

the subcooling temperature 3 K and 7 K. When the subcooling temperature was 3 K, the skeletal crystals 

were observed at both mass fractions. When the subcooling temperature was 7 K, the dendrite crystals 

were observed at both mass fractions.  
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1. Introduction 

Ionic semiclathrate hydrate is a crystalline compound consisting of hydrogen-bonded water molecules 

and ionic guest compounds. The cations of guest compounds are included into the cages formed with 

hydrogen-bonded water molecules and the anions of guest compounds [1]-[3].  

Recently, utilizing naturally occurring gas hydrate as an energy resource has been proposed. Clathrate 

hydrate can also be applied to energy and environmental technologies [4]-[7]. Clathrate hydrates are 

nonflammable materials because hydrates are formed with water and guest substances. However, the 

technologies using clathrate hydrate require high pressure for hydrate formation. Ionic semiclathrate 

hydrate would become the breakthrough on this problem. Ionic semiclathrate hydrates have large 

dissociation heat and can be formed under atmospheric pressure around room temperature [8]. For above 

reasons, utilizing ionic semiclathrate hydrate as a thermal energy storage medium has been proposed 

[9]-[11]. 

Actually, tetrabutylammonium bromide (TBAB) hydrate has been commercialized as a thermal energy 

storage medium [12]. Previous studies reported that the phase equilibrium temperature was 12.7 C [13] 

and the dissociation heat was 193.2 kJ/kg [14]. Therefore, TBAB hydrate is suitable to a thermal energy 

storage medium for general air conditioning system. However TBAB hydrate is a unique commercialized 

example because the studies on other ionic semiclathrate hydrate have not been reported enough. To 

develop thermal energy storage system using ionic semiclathrate hydrate, it is required to collect 

thermophysical properties as well as reveal the crystal growth behavior and the morphology of other ionic 

semiclathrate hydrate. 

Tetrabutylphosphonium acetate (TBPAce) hydrate would be suitable as a new thermal energy storage 
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medium. TBPAce hydrate is an eco-friendly material because it has non-halide ion. TBPAce has the simplest 

carboxylate group. Revealing the thermophysical properties and the crystal growth and morphology of 

TBPAce hydrate would be the fundamental basis of further understanding of ionic semiclathrate hydrate. 

As the previous study on TBPAce hydrate, the phase equilibrium temperature was 11.2 C and the 

dissociation heat was 192 kJ/kg [15]. These thermophysical properties are comparable to TBAB hydrate. 

However, the crystal growth behavior and morphology of TBPAce hydrate has not been reported. It is 

required to understand them to design thermal energy storage system. Therefore the crystal growth and 

morphology were observed in this study.  

2. Experiment Details 

2.1. Materials 

Tetrabutylphosphonium acetate (TBPAce) aqueous solution was obtained by neutralizing acetic acid 

(99%, Sigma-Aldrich Co. LLC) with tetrabutylphosphonium hydroxide (TBPOH) (40%, Sigma-Aldrich Co. 

LLC) on Table 1. The mass fraction of all sample was adjusted by adding the distilled water to TBPAce 

aqueous solution. In this study, the mass fraction 0.35 and 0.42 of TBPAce aqueous solution were made. The 

distilled water was made by the water distillation unit (Yamato Scientific Co., Ltd., WG 222). 

 

Table 1. The Materials in This Study 
Sample name Chemical formula Mass fraction Supplier 

tetrabutylphosphonium hydroxide  

aqueous solution 

(CH3CH2CH2CH2)4POH 0.40 Sigma-Aldrich Co. 

LLC. acetic acid CH3COOH 0.99 Sigma-Aldrich Co. 

LLC. distilled water H2O – laboratory made 

 

2.2. Crystal Growth Observation 

The schematic diagram of the apparatus used in this study is shown on Fig. 1. Approximately 0.2 g of 

TBPAce aqueous solution was injected into a glass test tube (external diameter 10 mm, internal diameter 8 

mm, height 90 mm) as a sample. The sample was set in a water bath and the system temperature was 

controlled by a chiller (Tokyo Rikakikai Co., CTP-3000). The system temperature around the glass test tube 

was measured by a platinum resistance temperature detector with the uncertainty of  0.1 K (coverage 

factor k = 2).  

The morphology of hydrate crystals depends on the system subcooling temperature ΔTsub [16]. Here the 

subcooling temperature is defined as ΔTsub ≡ Teq − Tex, where Teq is the phase equilibrium temperature and 

Tex is the experimental temperature. In this study, crystal growth behavior was observed at the subcooling 

temperatures 3 K and 7 K. Previous study reported that the phase equilibrium temperature of TBPAce 

hydrate [15]. The experimental conditions in this study are shown on Table 2, where wTBPAce indicates the 

mass fraction of TBPAce aqueous solution.  

First the system temperature was set at 273.2 K to form hydrate crystal in the glass test tube. After the 

completion of the hydrate formation, the system temperature was heated to Tex. When the system 

temperature became stable, the glass test tube was took out and the hydrate crystal was completely 

dissociated. After the completion of the hydrate dissociation, the glass test tube was set in the water bath 

again. Through this process, the memory effect could be used to shorten the induction time for the 

nucleation of hydrate crystals [17]. It was reported that the memory effect has no influence with the growth 

of the hydrate crystals [18]. The formation and the growth of the hydrate crystal was monitored and 

recorded with a microscope and a CMOS camera. 
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Fig. 1. Schematic diagram of the apparatus for the hydrate crystal growth and morphology observation. 

 
Table 2. The Experimental Condition in This Study 

wTBPAce Teq (K)[13] ΔTsub 

(K) 

Tex (K) 

0.35 284.2 
3 281.2 

7 277.2 

0.42 283.9 
3 280.9 

7 276.9 

 

3. Results and Discussion 

TBPAce hydrate crystals growing at wTBPAce=0.35 and at wTBPAce=0.42 were respectively observed at 

ΔTsub=3K and ΔTsub=7K. The observed images are shown on Figs. 2 and 3. Here wTBPAce was defined as the 

mass fraction of TBPAce aqueous solution. The time t below each pictures indicates the elapsed time after 

the first observation of TBPAce hydrate crystal. 

At the mass fraction 0.35 and the subcooling temperature 3 K or 7 K, the nucleation of the hydrate crystal 

occurred at the bottom of the glass test tube. At the both subcooling temperature, the columnar crystals 

grew in the vertical direction. The growth stopped when the crystal reached to the interface between 

TBPAce aqueous solution and air in the glass test tube. At the subcooling temperature 3 K, the skeletal 

crystals were observed as shown on Fig. 2 (a). The skeletal crystal was cylindrical shape like columnar 

crystal without the central part. With the growth of the skeletal crystal in the vertical direction, the vacancy 

of the skeletal crystal was filled with the hydrate grown from the bottom of the skeletal crystal. This results 

indicate that the crystals also grew into the central of the skeletal crystal. At the subcooling temperature 7 K, 

dendrite crystals were observed. The crystals newly formed on the side of the columnar crystal as shown on 

Fig. 2 (b). The difference of the subcooling temperature influenced the crystal morphology. The subcooling 

temperature can be identified as the driving force of the crystal formation and growth [19]. Therefore the 

secondary crystal nucleation occurred on the side of the columnar crystal and the dendrite crystals formed. 

The skeletal crystals were not observed at ΔTsub=7K. 

At the mass fraction 0.42 and the subcooling temperature 3 K and 7 K, the crystal nucleation occurred on 

the bottom of the glass test tube and the columnar crystals grew in the vertical direction. At the subcooling 

temperature 3 K, the skeletal crystals similar to that of the mass fraction 0.35 were observed as shown on 

Fig. 3(a). The dendrite crystals were not observed. At the subcooling temperature 7 K, The columnar 

crystals radially grew and the dendrite crystals formed immediately after the nucleation. The dendrite 

crystals kept growing and stopped the growth when the crystals reached at the interface between TBPAce 

aqueous solution and air. The dendrite crystals formed because the subcooling temperature was large 

similar to that at the mass fraction 0.35 and the subcooling temperature 7 K. However the direction of the 
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crystal growth was different between the mass fraction 0.35 and 0.42 at the same subcooling temperature 7 

K. At the mass fraction 0.35, the crystals grew in the vertical direction. At the mass fraction 0.42, the crystals 

grew radially. These results indicate that the crystal structure would be different between mass fraction 

0.35 and 0.42. It is known that ionic semiclathrate hydrates have polymorphism [8], [14], [20], [21]. The 

difference of the crystal structure would influence the morphology. 

 

 

 
Fig. 2. (a, b) Sequential images of TBPAce hydrate crystal growth (wTBPAce=0.35). 

 

 

 
Fig. 3. (a, b) Sequential images of TBPAce hydrate crystal growth (wTBPAce=0.42). 

 

From these results, the subcooling temperature has the significant influence on the morphology. When 

the subcooling temperature was small, the skeletal crystals were observed regardless of the mass fraction. 

When the subcooling temperature was large, the dendrite crystals were observed regardless of the mass 

fraction. These difference of the morphology influences the specific surface area of crystals. This indicates 
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that the difference of the subcooling temperature influences the heat transfer process. For designing the 

thermal energy storage pool, it should be considered that the efficiency of heat transfer depends on the 

subcooling temperature and the resulting crystal morphology.  

4. Conculsion 

TBPAce hydrate crystal was observed at the mass fraction 0.35 and 0.42 and the sub cooling temperature 

3 K and 7 K. The subcooling temperature has the biggest impact to the morphology. When the subcooling 

temperature was 3 K, the skeletal crystals were observed at the both mass fractions. When the subcooling 

temperature 7 K, the dendrite crystals were observed at the both mass fractions. However the difference of 

the mass fraction influenced the growth direction at the subcooling temperature 7 K. The crystals vertically 

grew at the mass 0.35 and the crystals radially grew at the mass fraction 0.42. When TBPAce hydrate is used 

as a thermal energy storage medium, the subcooling temperature influences with the efficiency of heat 

transfer. 
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