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Abstract: This objective of this study was to analyze the influence of WC-12Co coated SUS 400 stainless steel 

coatings on wear volume under sliding wear testing and to predict the tool life of WC-12Co. These WC-12Co 

specimens were passed the high velocity oxy-fuel (HVOF) sprayed coating and used to carry out the wear 

experiments under sliding wear behavior by the wear testing apparatus base on ASTM G133 standard. The 

Taylor’s equation was used to calculate the tool life prediction model. After that, the simulation of Monte Carlo 

method was used to estimate the tool life under several applied load (10-50 N). Finally, the applied load was 

influencing the tool life of WC-12Co coated SUS 400 stainless steel coatings.  
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1. Introduction 

The tool life prediction model is an important capability to productivity and dependable machining data 

which both important data can lead to optimal the tool life, minimal production costs and manufacturing 

efficiency [1]. Previously, several researchers used the Taylor’s equation as an empirical methodology for the 

tool life prediction models. There have been many researches of predicting tool life model in the Taylor’s 

equation namely; the mechanics models, dynamics models and tribology models [2]-[4]. This investigation 

leading to such functions was long term and requires many material resources. The studies concerning sliding 

wear behavior of the materials have been extensive and widely reported [5]-[8]. Varieties of possible tool life 

modelling approaches for uncertainty systems have been developed over the last decades. The sampling-

based through Monte Carlo simulation method is the most multipurpose and widely used because of its 

general applicability and typical robustness. Karandikar et al. applied the Taylor’s equation in combination 

with the Monte Carlo simulation method for the tool life prediction model of carbide tool for turning MS309 

steel work material [9] and Srisattayakul et al. calculated the tool life equation of fishing net-weaving machine 

component from Taylor’s equation the simulated the tool life graph of fishing net-weaving machine 

component from Monte Carlo simulation method [10].  

Thermal sprayed coating was used extensively in a variety of applications. There are many thermal spray 

processes available to date: the HVOF sprayed coating, which uses higher exhaust velocities and lower flame 



  

temperatures than other coating processes. HVOF sprayed coating can operate coatings of low porosity levels. 

Numerous researches have been performed on WC-Co based coating [11]-[13]. WC-Co based coatings were 

widely practiced in a variety of industrial applications as machining tool, extrusion die, compression mold, 

etc., due to their superior chemical combination of fracture toughness, surface roughness and hardness 

properties [14]-[17]. Among others, the WC-12Co coatings is one of the best choices for mechanical parts due 

to its intelligence wear resistance properties. HVOF sprayed WC-12Co coatings improved the wear resistance 

of mild steel under dry sliding conditions [18]. Moreover, it has been exhibited to compare with other 

materials [12], [19], [20]. 

In this study, the influence the sliding wear behavior of WC-12Co coated SUS 400 stainless steel on wear 

volume under high velocity oxygen fuel (HVOF) sprayed coating was investigated. The results of work, the 

tool life model of WC-12Co coated SUS 400 stainless steel using Taylor’s equation and Monte Carlo simulation 

method, respectively. 

2. Experimental Procedure 

The finished surface specimens were prepared the average surface roughness (Ra) of 6 µm with silicon 

carbide (SiC) abrasive papers. HVOF sprayed coating of WC-12Co micro-structured powders on SUS 400 

stainless steel was operated by the SULZER METCO DIAMOND JET machine (as shown in Fig. 1) which the 

optimization of HVOF parameters such as fuel/oxygen ratio of 16-19 l/min per 250-290 l/min [21-23], the 

powder feed rate 98-116 g/min [24] and the spraying distance 250-298 mm, as shown in Table 1. 

 

 
Fig. 1. HVOF sprayed coating of WC-12Co by SULZER METCO DIAMOND JET machine. 

 

Table 1. Parameters of WC-12Co Coated SUS 400 Stainless Steel on HVOF Sprayed Coating Process 
Deposition parameter Value 

Oxygen flow 250-290 l/min 
Propane flow 16-19 l/min 
Powder feed rate 98-116 g/min 
Spraying distance 250-298 mm 

 

The sliding wear behavior of the WC-12Co coatings were investigated using a pin-on-flat wear testing 

machine under un-lubricated conditions. In the experiment of the sliding wear testing, the WC-pin 

(cylindrical of Ø 2.5 mm) was tested in a sliding wear apparatus, such as ASTM G133 standard [25]. The wear 



  

tester apparatus is shown in Fig. 2.  Environment of sliding wear testing were controlled temperature of 20oC 

and relative humidity of 50%. The specimens (dimension of 25×50×3 mm) were subjected to the sliding wear 

test condition were applied load range of 20 N and 40 N, a sliding velocity of 200 rpm, a stroke length of 15 

mm and continuous sliding distance range of 1000 to 5000 m with 5 replicates in each test condition. These 

parameters of sliding wear behavior of the WC-12Co coatings were presented in Table 2. The results of wear 

volume after passed the sliding wear testing can show in Table 3. 

 
Fig. 2. Sliding wear testing machine. 

 

Table 2. Parameters of Sliding Wear Testing 
Wear testing parameter Value 

applied load 20 and 40 N 

sliding distance 1000, 2000, 3000, 4000 and 5000 m 

sliding velocity 200 rpm 

stroke length 15 mm 

Temperature 20oC 

Humidity 50% 

 

Table 3. Sliding Distance Corresponding to the Wear Volume Values at the Level of 30 mm2 of WC-12Co 

Applied Load Sliding Distance (m) 

 (N) 1000 2000 3000 4000 5000 

20 4.0471 8.89 12.9919 21.9454 31.0344 
20 4.0121 8.9502 12.9726 21.9369 30.9726 
20 3.9842 9.0118 13.0134 22.1082 30.9858 
20 4.0661 8.9185 13.1003 21.9566 30.9426 
20 3.9769 8.948 12.9986 22.0405 31.0048 
40 8.1043 17.9027 26.0525 44.011 62.0343 
40 8.0157 17.8745 25.9784 43.9116 61.9911 
40 7.9534 17.8062 26.0164 43.9708 61.9919 
40 8.1866 17.7332 26.043 43.8351 62.0042 
40 8.1238 18.101 26.1198 43.7221 62.1524 

3. Result of Experimental 

The wear volume was used to characterize the influences of WC-12Co on the wear volume under sliding 

wear testing with the time range from 1000 to 5000 m. The wear volume of the specimen has a major negative 

effect on the surface and the quality of the mechanical when the wear volume reaches a certain level of 30 

mm3. The wear volume of WC-12Co was plotted as a function of sliding distance with applied load range of 

20 N and 40 N, which is illustrated in Figure 3. It was noted that wear volume increased with the increase of 

applied load for WC-12Co. 

Specimen 

WC-cylindrical pin 



  

 
Fig. 3. Average wear volume versus sliding distance of WC-12Co. 

 

The different wear volume of the two applied loads can be estimated to a tool life model. Tool life model 

was obtained from Taylor’s equation based on the results of the wear volume as the function of sliding 

distance with applied load range of 20 N and 40 N. The basic Taylor’s equation was developed to relating life 

of the hook to the main wear experimental parameter (i.e., applied load) shown in Equation (1) [26]. In 

literature [27], [28], considerable studies were reported on relationship between the machining process with 

tool life. 
 

 𝐿 (𝑇)𝑛     =      𝐶 (1) 
 

where T is the tool life (m), L is the applied load (N). Furthermore, n and C are the tool life coefficient of the 

specimen, whose values depend on sliding wear testing conditions. The tool life model of WC-12Co modified 

by the Taylor’s equation were formulated with logarithm technique as Equation (2). After that, the coefficient 

of the model was calculated based on the modified Taylor’s equation. Therefore, the tool life model of WC-

12Co was obtained as Equation (3) and (4), respectively. 

 
 𝑛 log 𝑇 − log 𝐶 = − log 𝐿 (2) 
 
 

𝐿 (𝑇)−1.6089 = 0.00004475                                   (3) 
 

𝑇 =(0.00004475
𝐿⁄ )

−1
1.6089⁄

                                (4) 

 

After that, the variation of WC-12Co tool life model can be achieved by using a Monte Carlo simulation. The 

Monte Carlo method applied the principle’s normal distribution by specifying the mean and variation for 

input at a confidence level of 95 %. The five-levels of applied load range (10 N, 20 N, 30 N, 40 N and 50 N) 

were defined as the input to generate sampling data set for each applied load. Each level of applied load 

created the sampling data set of 50 that followed normal distribution which these data were investigated the 

statistical at a confidence level of 95% (as shown in Fig. 4). Finally, the result of the Monte Carlo simulation 

for the tool life models of WC-12Co is presented in Fig. 5. The limitation of WC-12Co tool life model were 

exhibited the 5743.97 m, 5000 m, 4180.83 m, 3250.19 m and 2110.67 m at applied load at 10 N, 20 N, 30 N, 

40 N and 50 N, respectively. 



  

  
(a) Histogram of tool life 10 N. (f) Probability plot of tool life 10 N. 

  
(b) Histogram of tool life 20 N. (g) Probability plot of tool life 20 N. 

  
(c) Histogram of tool life 30 N. (h) Probability plot of tool life 30 N. 

  
(d) Histogram of tool life 40 N. (i) Probability plot of tool life 40 N. 

  
(e) Histogram of tool life 50 N. (j) Probability plot of tool life 50 N. 

 

Fig. 4. The data investigation of principle’s normal distribution. 
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Fig. 5. The Monte Carlo simulation for the life models of WC-12Co. 

4. Conclusion 

In this study, the Taylor’s equation in conjunction with Monte Carlo simulation was generated to the tool 

life model for prediction of WC-12Co coated SUS 400 stainless steel under sliding wear testing. Based on the 

tool life relationship of WC-12Co coated SUS 400 stainless steel between the applied loads with the sliding 

distance namely; the applied load was increased then the sliding distance reduced. 
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