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Abstract—Material selection is one of the most important 

decisions in optimal design of any manufacturing process 

and product. Proper material selection plays an elementary 

role for a productive manufacturing system with superior 

product and process excellence along with cost optimization. 

Improper material selection frequently causes enormous 

cost contribution and drives an organization towards 

immature product failure. A proficient methodology for 

material selection is thus required to help the 

manufacturing organizations for selecting the best material 

for a particular application. This paper focuses on the 

applications of two almost unrevealed multi-criteria 

approaches, namely complex proportional assessment 

(COPRAS) and additive ratio assessment (ARAS)-based 

methods for solving a gear material selection problem in a 

given manufacturing environment. A complete list of all the 

prospective materials from the best to the worst is obtained, 

taking into account multi-conflicting material selection 

attributes. The ranking performance of these two methods 

is also compared with that of the past researchers. 

 

Index Terms—gear material selection, MCDM, COPRAS, 

ARAS, performance analysis 

 

I. INTRODUCTION 

Since the beginning of the manufacturing era, 

materials play a fundamental role for a cost effective 

production system to get desired outputs with improved 

productivity. Material selection is an essential footstep in 

the process of designing any physical product and its 

related manufacturing process. In a methodical and 

proficient material selection approach, the best material is 

selected based on its potentiality to fulfill the 

manufacturing objectives. In the context of product 

design, the main goal of material selection is to minimize 

cost while meeting the product performance objectives. 

Systematic selection of the material for a given 
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application begins with the study of different materials 

and their properties. Improper material selection 

frequently causes huge cost contribution and drives an 

organization towards immature product failure. So the 

manufacturing designers should identify and select 

suitable materials with specific functionalities in order to 

obtain the desired product with least cost and intended 

applicability. However, in the light of manufacturing 

scenario, selection of material for a particular product is a 

tedious and time-consuming task to execute, because 

there are number of factors that have to be carefully 

assessed before making the final decision. For any 

particular application, the most important requirement 

may be the material strength, but depending on the 

working environment and functional performance, 

several other factors may have to be judged concurrently. 

Selection of the most suitable material involves the study 

of a large number mechanical, thermal, electrical and 

physical properties with cost consideration, operating 

environment, production process, market value, 

availability of supplying sources and product 

performance. For mechanical design, the mechanical 

properties of the materials are given the top priorities. 

The most important mechanical properties that are 

usually encountered in the material selection process are 

strength, stiffness, toughness, hardness, density and creep 

resistance.  

The basic principle of material selection is thus to 

carefully identify the application requirements, then 

define the foremost selection criteria and finally, 

alternative material choices are narrowed down by the 

method of elimination (screening) and amalgamation of 

the contradictory criteria [1]-[3]. Thus, the material 

selection can be regarded as a multi-criteria decision-

making (MCDM) problem for which a logical and 

systematic material selection approach is required for 

identifying the best alternative. The main task lies in 

comparing the properties of a feasible set of alternative 

materials and selecting the best one out of this set. But 
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while choosing a material for an engineering application, 

the designers usually apply trial and error methods or 

employ their knowledge and perception which may fail at 

any instance.  

So for selection of materials, an efficient and organized 

approach, based on some strong mathematical foundation, 

is thus required to make sure the integration between 

design and manufacturing objectives. Material property 

data sheets should never be directly used for the ultimate 

selection of materials. The actual performance of a 

particular material under different conditions may differ 

from the expectations. 

II. LITERATURE REVIEW ON MATERIALS SELECTION 

For the selection of suitable materials for diverse 

manufacturing and design applications, the past materials 

and operational researchers have introduced and 

developed numerous multi-criteria approaches and 

systems.  

Jee and Kang [4] applied technique for order 

preference by similarity to ideal solution (TOPSIS) 

method to solve a flywheel material selection problem 

taking into consideration several technical requirements 

simultaneously and also used entropy approach to 

evaluate the weight of the material selection attributes. 

Sapuan [5] developed a knowledge-based system for 

selection of polymeric-based composite materials. Qian 

and Zhao [6] used the concept of ‘performance index’ to 

select appropriate material for a given micro 

electromechanical system design problem. The selection 

procedure was based on tuning the performance 

uniqueness to the requirements.  

Milani, Shanian, Madoliat and Nemes [7] studied the 

effects of different criteria transformation techniques in 

TOPSIS method while solving a power transmission gear 

material selection problem. Shanian and Savadogo [8] 

adopted Elimination and Et Choice Translating Reality 

(ELECTRE)-based outranking approach for a mass 

produced non-heat-treatable cylindrical cover material 

selection problem and validated their results with the data 

available in the Cambridge Engineering Selector (CES). 

Rao [9] employed graph theory and matrix approach 

(GTMA) for solving two material selection problems, i.e. 

for a cryogenic storage tank and for a product designed 

for operating in a high-temperature oxygen-rich 

environment and also proposed a ‘material suitability 

index’ to measure the degree by which a material could 

be successfully selected for the given engineering design. 

Milani and Shanian [10] applied ELECTRE III method to 

rank the best compromised candidate gear materials 

considering criteria trade-offs, designers’ preference 

information, data uncertainties and incompleteness. Chan 

and Tong [11] presented an integrated methodology of 

constructing an order pair of materials and end-of-life 

product strategy for material selection using grey 

relational analysis approach. Shanian and Savadogo [12] 

compared compromise ranking, ELECTRE IS and 

ELECTRE IV for solving a highly sensitive component 

material selection problem involving mutually conflicting 

design objectives. Thakker, Jarvis, Buggy, and Sahed [13] 

proposed a novel approach for optimal selection of wave 

energy extraction impulse turbine blade material 

combining the Cambridge Material Selector-based 

method, adapted value engineering technique and 

TOPSIS method.  

Sharif Ullah and Harib [14] presented an intelligent 

method to treat material selection problems where design 

configurations, working conditions and design-relevant 

information were not precisely known. Rao and Davim 

[15] used a logical system of material selection for a 

given engineering design combining TOPSIS and 

analytic hierarchy process (AHP) methods, and proposed 

a ‘material selection index’ to help the designers to assess 

and grade the feasible materials. Chatterjee, Athawale 

and Chakraborty [16] solved a flywheel and a sailing boat 

material selection problems using Vlse Kriterijumska 

Optimizacija Kompromisno Resenje (VIKOR) and 

ELECTRE II methods, and compared their relative 

ranking performances. Jahan, Ismail and Sapuan [17] 

reviewed different quantitative procedures developed to 

solve material selection problems for various engineering 

applications. The details of those methods, including 

application modalities, qualities and inadequacies, were 

mainly addressed.  

Jahan, Mustapha, Ismail, Sapuan and Bahraminasab 

[18] proposed a new version of VIKOR method with a 

novel normalization technique based on criteria target 

values and derived a compromise algorithm for material 

selection problems. Chatterjee, Athawale and 

Chakraborty [19] suggested resolving the material 

selection problems using two almost new MCDM 

methods, i.e. COPRAS and evaluation of mixed data 

(EVAMIX) methods. These two methods were used to 

rank the alternative materials, for which several 

requirements were considered simultaneously approaches.  

Maity, Chatterjee and Chakraborty [20] considered an 

exhaustive list of 19 cutting tool materials and evaluated 

their performances based on ten selection criteria. 

COPRAS-G method was then applied to solve the cutting 

tool material selection problem considering grey data in 

the decision matrix. Chatterjee and Chakraborty [21] 

applied preferential ranking methods for material 

selection. These methods have the output of a list of best-

to-worst suitable materials based on the decision criteria 

and their relative importance.  

Chatterjee and Chakraborty [22] attempted to solve the 

material selection problems using COPRAS and complex 

proportional assessment with grey number (COPRAS-G) 

methods while considering different material selection 

criteria and their relative importance. The rankings 

obtained using these two methods almost corroborate 

with those derived by the past researchers. Girubha and 

Vinodh [23] used VIKOR method for material selection 

of electric car instrument panel under fuzzy environment. 

Jahan, Mustapha, Sapuan, Ismail and Bahraminasab [24] 

proposed an explicit and logical procedure to guide 

designers to determine the relative importance of material 

selection attributes. The proposed framework covered 

objective, subjective and interdependency among 

different material selection attributes. Athawale and 
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Chakraborty [25] applied ten most commonly used multi-

criteria approaches for solving different material selection 

problems and compared their relative ranking 

performances. Maity and Chakraborty [26] proposed a 

fuzzy analytic network process (FANP)-based material 

selection methodology and solved a supercritical boiler 

material problem. Maity and Chakraborty [27] applied a 

fuzzy ANP-based approach to select the most appropriate 

materials for wind energy and wave energy extraction 

impulse turbine blades. Karande, Gouri and Chakraborty 

[28] applied utility concept and desirability function 

approach to solve four material selection problems in 

discrete manufacturing environments. Prasad and 

Chakraborty [29] solved some material selection 

problems using quality function deployment (QFD) 

approach while integrating the voice of the customers for 

a product with its technical requirements. Rai, Jha, 

Chatterjee, Chakraborty [30] proposed a compromise 

ranking method in the perspective of regret theory as a 

tool for solving material selection problems in 

manufacturing environment. Chakraborty and Chatterjee 

[31] considered five material selection problems and 

solved using VIKOR, TOPSIS and Preference Ranking 

Organization Method for Enrichment Evaluation 

(PROMETHEE) methods to demonstrate the effect of 

number of criteria on the final rankings of the material 

alternatives. It was observed that the choices of the best 

suited materials solely depend on the criterion having the 

maximum priority value. It was also found that among 

the three MCDM methods, the ranking performance of 

VIKOR method was the best. Chauhan and Vaish [32] 

applied various MCDM approaches for solving a hard 

coating material selection problem. TOPSIS was used for 

ranking the alternative materials, while material selection 

charts were used to select the alternative hard coating 

materials. Hierarchical clustering was used to classify 

hard coating materials under study. Pearson correlation 

coefficients were calculated between the materials 

properties under study which could be integrated with 

materials informatics for rapidly screening and designing 

materials. 

From the literature review as presented above, it is 

well understood that numerous research works have 

already been carried out by the past researchers for 

solving manufacturing and design material selection 

problems using different mathematical and MCDM-based 

methods, but very little effort has yet been employed to 

compare the relative performance of various multi-

criteria approaches while solving the material selection 

problems. In this paper, an attempt is made to balance 

this space while comparing the ranking performances of 

COPARAS and ARAS methods for solving a gear 

material selection problem under a given manufacturing 

environment. Till date, these two MCDM methods have 

very limited applications in the material selection domain. 

One example is cited to demonstrate the feasibility of 

these two approaches. It is observed that these two 

MCDM methods have very high potentials to deal with 

such complex manufacturing decision-making problems.  

III. COMPLEX PROPORTIONAL ASSESSMENT AND 

ADDITIVE RATIO ASSESSMENT-BASED METHODS 

A. Complex Proportional Assessment Method  

The COPRAS method assumes direct and proportional 

dependences of the significance and utility degree of the 

available alternatives under the presence of mutually 

conflicting criteria [33], [34], [35]. It takes into account 

the performance of the alternatives with respect to 

different criteria and also the corresponding criteria 

weights. This method selects the best decision 

considering both the ideal and the ideal-worst solutions. 

The COPRAS method which is used here for decision-

making in manufacturing environment adopts a six stage 

procedure for ranking and evaluating alternatives in terms 

of their significance and utility degree. COPRAS method 

has the ability to account for both positive (beneficial) 

and negative (non-beneficial) criteria, which can be 

assessed separately within the evaluation process. The 

most important feature that makes COPRAS method 

superior to other methods is that it can be used to 

calculate the utility degree of alternatives indicating the 

extent to which one alternative is better or worse than 

other alternatives taken for comparison. The steps for 

COPRAS method are presented as below:  

Step 1: Normalize the decision matrix using linear 

normalization procedure [34]. The purpose of 

normalization is to obtain dimensionless values of 

different criteria so that all of them can be compared.  

Step 2: Determine the weighted normalized decision 

matrix, D.  

jijmxnij wxr][yD   (i = 1,2,…,m; j = 1,2,…,n)    (1) 

The sum of dimensionless weighted normalized values 

of each criterion is always equal to the weight for that 

criterion. 

j

m

1i

ij wy 


                     (2) 

Thus, it can be said that the weight, wj of j
th

 criterion is 

proportionally distributed among all the alternatives 

according to their weighted normalized value, yij. 

Step 3: The sums of weighted normalized values are 

calculated for both the beneficial and non-beneficial 

attributes using the following equations:  




 
n

1j

iji yS                               (3) 




 
n

1j

iji yS                               (4) 

where y+ij and y-ij are the weighted normalized values for 

beneficial and non-beneficial attributes respectively. The 

greater the value of S+i, the better is the alternative; and 

the lower the value of S-i, the better is the alternative. The 

S+i and S-i values express the degree of goals attained by 

each alternative. In any case, the sums of ‘pluses’ S+i and 

‘minuses’ S-i of the alternatives are always respectively 

equal to the sums of weights for the beneficial and non-
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beneficial attributes as expressed by the following 

equations:  


 





 
m

1i

n

1j

ij

m

1i

i ySS                  (5) 


 





 
m

1i

n

1j

ij

m

1i

i ySS                 (6) 

Step 4: Determine the significances of the alternatives 

on the basis of defining the positive alternatives S+i and 

negative alternatives S-i characteristics. 

Step 5: Determine the relative significances or 

priorities (Qi) of the alternatives.  

)SS(S

SS

SQ
m

1i

imini

m

1i

imin

ii













    (i = 1,2,…,m)      (7) 

where S-min is the minimum value of S-i. The greater the 

value of Qi, the higher is the priority of the alternative. 

The relative significance value of an alternative shows 

the degree of satisfaction attained by that alternative. The 

alternative with the highest relative significance value 

(Qmax) is the best choice among the candidate alternatives.  

Step 6: Calculate the quantitative utility (Ui) for i
th

 

alternative. The degree of an alternative’s utility which 

leads to a complete ranking of the candidate alternatives 

is determined by comparing the priorities of all the 

alternatives with the most efficient one and can be 

denoted as below: 

100%x
Q

Q
U

max

i
i 








                         (8) 

where Qmax is the maximum relative significance value. 

These utility values of the alternatives range from 0% to 

100%.  

Thus, this approach allows for evaluating the direct 

and proportional dependence of significance and utility 

degree of the considered alternatives in a decision-

making problem having multiple criteria, their weights 

and performance values of the alternatives with respect to 

all the criteria. 

B. Additive Ratio Assessment Method 

ARAS method is based on quantitative measurements 

and utility theory. In this method, a utility function value 

determines the relative efficiency of an alternative over 

the other alternatives. This utility function is directly 

proportional to the relative effect of the criteria values 

and weight importance of the considered criteria. The 

utility value of an alternative is determined by a 

comparison of variant with the ideally best alternative. 

The steps of ARAS method are presented as follows [36, 

37]:  

Step 1: For the beneficial attributes, determine the 

normalized decision matrix using a linear normalization 

procedure, as proposed by Turskis and Zavadskas [37]. 

For non-beneficial attributes, the normalization procedure 

follows two steps. At first, the reciprocal of each criterion 

with respect to all the alternatives is taken as follows:   

ij

*

ij

x

1
x                                        (9) 

In the second step, the normalized values are 

calculated:  





m

1i

*

ij

*

ij

mxnij

x

x
][rR                          (10) 

Step 2: Determine the weighted normalized decision 

matrix, D, using (1). This step is similar to COPRAS 

method. 

Step 3: Determine the optimality function (Si) for i
th

 

alternative.  





n

1j

iji
yS                               (11) 

Higher the Si value, the better is the alternative. The 

optimality function Si has a direct and proportional 

relationship with the values in the decision matrix and 

criteria weights.   

Step 4: Calculate the degree of utility (Ui) for each 

alternative.  

It is determined by a comparison of the variant with 

the most efficient one (S0). The equation used for 

calculation of the utility degree (Ui) is given as below:  

0

i

i

S

S
U                                  (12)  

The utility values of the alternatives range from 0% to 

100%. The alternative with the highest utility value (Umax) 

is the best choice among the candidate alternatives. 

IV. ILLUSTRATIVE EXAMPLE 

To reveal the computational precision and expediency 

of the complex proportional assessment and additive ratio 

assessment-based MCDM methods, a power transmission 

gear material selection problem from Milani, Shanian, 

Madoliat and Nemes [7] is considered.  

Gears are generally rotary machine wheels with cut 

teeth. Gears mesh together and make things turn. Gears 

are generally used for reversing the direction of rotation, 

to increase or decrease speed of rotation and to move 

rotational motion to a different axis. Gears are also used 

to transfer motion or power from one moving part to 

another. If power is provided to turn one gear, that gear 

can turn another gear. Two or more gears working in 

tandem are called transmission and can produce 

mechanical advantage through gear ratio, and so, it may 

be considered as a simple machine.  

For selection of the suitable gear material for any type 

of application, mainly three types of criteria, i.e. atomic 

bond strength, arrangement and packing of the atoms in 

solid material, and tooth failure are emphasized. 

Microstructure-insensitive properties (like density, elastic 

modulus and thermal properties) and microstructure-

sensitive properties (e.g. strength, ductility, fracture 
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toughness and hardness) are also predominant in gear 

material selection problems.  

Keeping in view the above requirements, Milani, 

Shanian, Madoliat and Nemes [7] considered nine 

alternative gear materials and five selection attributes, i.e. 

surface hardness (SH) (in BHN), core hardness (CH) (in 

BHN), surface fatigue limit (SFL) (in N/mm
2
), bending 

fatigue limit (BFL) (in N/mm
2
) and ultimate tensile 

strength (UTS) (in N/mm
2
) for the given power 

transmission gear material selection problem. Among 

these five criteria, core hardness is the only non-

beneficial attribute where lower value is always preferred.  

The quantitative data for this gear material selection 

problem is given in Table I. Milani, Shanian, Madoliat 

and Nemes [7] applied TOPSIS method for solving that 

gear material selection problem and adopted entropy 

approach to determine the criteria weights as wSH = 0.172, 

wCH = 0.005, wSFL = 0.426, wBFL = 0.292 and wUTS = 

0.102. These criteria weights are used here for the 

subsequent analyses. A complete list of all the possible 

choices from the best to the worst suitable materials is 

obtained using each of the preference ranking-based 

methods taking into account different material selection 

attributes simultaneously. The ranking performances of 

these two methods are also compared with that obtained 

by the past researchers. 

TABLE I.  QUANTITATIVE DATA FOR GEAR MATERIAL SELECTION 

PROBLEM [7] 

Material SH CH SFL BFL UTS 

Cast iron (A1) 200 200 330 100 380 

Ductile iron (A2) 220 220 460 360 880 

S.G. iron (A3) 240 240 550 340 845 

Cast alloy steel (A4) 270 270 630 435 590 

Through hardened 

alloy steel (A5) 
270 270 670 540 1190 

Surface hardened 

alloy steel (A6) 
585 240 1160 680 1580 

Carburised steel 

(A7) 
700 315 1500 920 2300 

Nitrided steel (A8) 750 315 1250 760 1250 

Through hardened 

carbon steel (A9) 
185 185 500 430 635 

A. COPRAS Method  

While solving this gear material selection problem 

using COPRAS method, the data of the decision matrix, 

as shown in Table I, is first transformed into 

dimensionless values using linear normalization 

procedure, so that all these criteria can be comparable. 

Then the corresponding weighted normalized matrix is 

obtained using (1), as given in Table II. Now, using (3) 

and (4), the sums of the weighted normalized values are 

estimated for both the beneficial (S+i) and non-beneficial 

attributes (S-i), as given in Table III.  

Then, applying (7), the relative significance or priority 

value (Qi) for each alternative gear material is computed, 

as shown in Table IV. This table also exhibits the value 

of quantitative utility (Ui) as calculated using (8) for each 

alternative on the basis of which a complete ranking of 

the alternative materials is obtained.  

The candidate materials for designing the power 

transmission gear material selection problem are then 

arranged in descending order of Ui values yielding a 

complete ranking of the materials as A7 > A8 > A6 > A5 > 

A4 > A3 > A9 > A2 > A1. The best choice is material A7 

(carburised steel) and the worst choice is material A1 

(cast iron).  

TABLE II.  WEIGHTED NORMALIZED MATRIX 

Material  SH  CH  SFL  BFL  UTS 

A1 0.0101 0.0004 0.0199 0.0064 0.0040 

A2 0.0111 0.0005 0.0278 0.0230 0.0093 

A3 0.0121 0.0005 0.0332 0.0217 0.0089 

A4 0.0136 0.0006 0.0381 0.0278 0.0062 

A5 0.0136 0.0006 0.0405 0.0345 0.0126 

A6 0.0294 0.0005 0.0701 0.0435 0.0167 

A7 0.0352 0.0007 0.0906 0.0588 0.0243 

A8 0.0377 0.0007 0.0755 0.0486 0.0132 

A9 0.0093 0.0004 0.0302 0.0275 0.0067 

TABLE III.  SUMS OF WEIGHTED NORMALIZED VALUES 

Material S+i Value S-i Value 

A1 S+1 0.0404 S-1 0.0004 

A2 S+2 0.0712 S-2 0.0005 

A3 S+3 0.0760 S-3 0.0005 

A4 S+4 0.0857 S-4 0.0006 

A5 S+5 0.1012 S-5 0.0006 

A6 S+6 0.1597 S-6 0.0005 

A7 S+7 0.2090 S-7 0.0007 

A8 S+8 0.1751 S-8 0.0007 

A9 S+9 0.0737 S-9 0.0004 

TABLE IV.  QI AND UI VALUES FOR ALTERNATIVE MATERIALS 

Material Qi Ui Rank 

A1 0.0411 19.6184 9 

A2 0.0718 34.2847 8 

A3 0.0765 36.5498 6 

A4 0.0862 41.1631 5 

A5 0.1017 48.5524 4 

A6 0.1603 76.5285 3 

A7 0.2094 100.0000 1 

A8 0.1755 83.8015 2 

A9 0.0745 35.5552 7 
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B. ARAS Method 

In this method, from the normalized decision matrix, 

the weighted normalized matrix is first developed, as 

given in Table V. This step is similar to that of COPRAS 

method. Next, using (11), the optimality function (Si) for 

each of the gear material alternative is calculated. Then, 

the corresponding values of the utility degree (Ui) are 

determined using (12) for all the alternatives. The utility 

degree weighs each alternative with respect to the most 

efficient one. These utility values offer a comprehensive 

ranking of the considered material alternatives. Higher 

the value of utility degree, better is the alternative. The 

values of Si and Ui, and the ranking achieved by the 

materials are displayed in Table VI. It is revealed from 

this table that carburised steel (A7) is the best chosen 

alternative, whereas cast iron (A1) is the worst choice 

which exactly corroborates with that of indicated by 

COPRAS method. 

TABLE V.  WEIGHTED NORMALIZED MATRIX 

Material  SH  CH  SFL  BFL  UTS 

A1 0.0101 0.0007 0.0199 0.0064 0.0040 

A2 0.0111 0.0006 0.0278 0.0230 0.0093 

A3 0.0121 0.0006 0.0332 0.0217 0.0089 

A4 0.0136 0.0005 0.0381 0.0278 0.0062 

A5 0.0136 0.0005 0.0405 0.0345 0.0126 

A6 0.0294 0.0006 0.0701 0.0435 0.0167 

A7 0.0352 0.0004 0.0906 0.0588 0.0243 

A8 0.0377 0.0004 0.0755 0.0486 0.0132 

A9 0.0093 0.0007 0.0302 0.0275 0.0067 

TABLE VI.  SI AND UI VALUES OF EACH GEAR MATERIAL 

ALTERNATIVE 

Material Si Ui Rank 

A1 0.0411 0.1962 9 

A2 0.0718 0.3428 8 

A3 0.0765 0.3655 6 

A4 0.0862 0.4116 5 

A5 0.1017 0.4855 4 

A6 0.1603 0.7653 3 

A7 0.2094 1.0000 1 

A8 0.1755 0.8380 2 

A9 0.0745 0.3556 7 

V. COMPARATIVE ANALYSIS  

For comparing the relative performances of COPRAS 

and ARAS methods with respect to TOPSIS method as 

adopted by Milani, Shanian, Madoliat and Nemes [7] 

while solving this gear material selection problem, the 

following five tests are performed. The performance 

measures in the evaluation matrices are kept constant 

during all these tests. It is observed that in all these 

preference ranking-based methods, carburized steel (A7) 

evolves out as the best choice for this gear material 

selection problem, although there are some deviations in 

the rankings of the intermediate materials due to different 

mathematical modeling as involved in these two 

approaches. Table VII summarizes the ranking preorders 

of the alternative gear materials as derived from the 

considered MCDM methods. The ranking performances 

of COPRAS and ARAS methods with respect to TOPSIS 

method are exhibited in Fig. 1. 

TABLE VII.  RANKING PREORDERS OBTAINED FROM DIFFERENT 

MCDM METHODS 

Material TOPSIS [7] COPRAS ARAS 

A1 9 9 9 

A2 8 8 8 

A3 7 6 6 

A4 5 5 5 

A5 4 4 4 

A6 3 3 3 

A7 1 1 1 

A8 2 2 2 

A9 6 7 7 
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Figure 1. Comparative rankings of gear materials 

 At first, scatter diagrams are plotted between the 

ranks obtained by Milani, Shanian, Madoliat and 

Nemes [7] using TOPSIS method and those 

derived using different preference ranking-based 

methods to clearly visualize the ranking 

similarities between them. These scatter diagrams 

are shown in Fig. 2 (a) and (b). A closer look at 

Fig. 2 (a) and (b) reveals that COPRAS and ARAS 

methods have produced exactly the same ranking 

of the alternative gear materials.  
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Figure 2. Scatter diagrams between TOPSIS, COPRAS and ARAS 
methods 

 In the second test, the overall ranking agreement 

among all these methods is determined using the 

Kendall’s coefficient of concordance (z) value. 

For this gear material selection problem, z value is 

obtained as 0.9925, indicating an almost perfect 

conformity between these methods.  

 In the third test, the Spearman’s rank correlation 

coefficient (rs) values are computed to measure the 

association between the ranks obtained by the 

various MCDM methods. From Table 8, it is 

observed that rs value ranges from 0.98 to 1.00, 

and COPRAS and ARAS methods have perfect 

agreement between themselves and almost a 

perfect agreement with respect to TOPSIS method 

as adopted by Milani, Shanian, Madoliat and 

Nemes [7].  

 The fourth test is based on the agreement between 

the top three ranked gear material alternatives as 

indicated by these methods. Here, a result of (1,2,3) 

means the first, second and third ranks match. 

Table 8 again exhibits the results of this test which 

indicates that all the three methods have produced 

exactly the same ranking preorders for the top 

three ranked gear material alternatives.  

 Now the last test is performed to determine the 

overall percentage of ranks matched for these 

methods. It is again observed from Table VIII that 

COPRAS and ARAS methods show very higher 

percentage (77.77%) of rank matches with respect 

to TOPSIS method. 

TABLE VIII.  PERFORMANCE TEST TABLE FOR RATIO ANALYSIS-
BASED METHODS 

Method COPRAS ARAS 

TOPSIS [59] 
0.98 

(1,2,3), 77.77 

 

0.98 
(1,2,3), 77.77 

 

COPRAS  
1 

(1,2,3), 100.00 

VI. CONCLUSION AND DISCUSSION 

The illustrative example proves the application 

expediency and accuracy of COPRAS and ARAS 

methods while solving a complex gear material selection 

problem. The decision maker can easily apply these 

methods to evaluate the alternatives and select the most 

suitable material, while being completely unaware of the 

physical meaning of the decision-making process. The 

ranking preorders as derived using these two methods 

almost perfectly match with those as obtained by the past 

researchers. While applying COPRAS and ARAS 

methods to decision-making problems, a simple weighted 

summation technique is adopted separately for the 

normalized beneficial and non-beneficial attributes, 

leading to the calculation of an overall significance or 

utility of the considered alternatives. The main difference 

between the operational procedures of COPRAS and 

ARAS methods lies in the way they normalize the 

decision matrix. In COPRAS, a straightforward linear 

normalization is adopted, whereas, in ARAS method, a 

two step linear normalization technique is used. Both 

these two methods are relatively flexible and easy to 

understand, also segregates the subjective part of the 

decision-making process into criteria weights including 

decision makers’ preferences. 

Both the two methods can be proficiently used to any 

type of industrial material selection problems involving 

any number of qualitative and quantitative criteria, and 

any number of decision alternatives.  
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