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Abstract: Over the last few decades there has been an increased adoption of composite materials into 

engineering systems. This mainly to reduce weight, resulting in lowered energy and fuel consumption. At 

present, unlike its metallic counterparts, composites materials cannot be recycled effectively. Therefore to 

stop materials unnecessarily being sent to landfill, it is imperative to repair composite components to 

extend their service lives. This puts greater importance on the process of evaluating if a composite repair 

has been accomplished successfully. This paper presents the initial stages in the development of a method 

using guided acoustic emission to assess the repair, and the computational modelling performed to validate 

the process. 
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1. Introduction 

The use of composite materials in a variety of engineering applications has increased over the last few 

decades. Mainly due to their mechanical properties such as: corrosion and fatigue resistance, production 

versatility which make it a better choice in certain applications than metals [1]. Its low density also 

provides the opportunity to reduce weight. Such reductions in component weight result in a lowered energy 

and fuel consumption [2]. Composite materials consist of two or more elements, the fiber phase is usually 

made of (glass (GF) and carbon (CF), is distributed in a continuous phase matrix (epoxy). The two or more 

elements act together to produce material properties that are different to the properties of the constituent 

elements. Such composite are commonly used in aerospace components, automotive and motorsport, 

sports equipment and even packaging machines [3]. 

Naturally composite materials exist in nature such as wood while industrially manufactured composite 

materials include Kevlar-epoxy matrix and graphite-epoxy matrix (CFRP). Composites materials are 

combined in order to allow better use of the constituent virtues [1]. As with any component, composites 

have a service life and within this period there is always the potential for damage. The method for repairing 

composites is simple in its technique. Its core function is to fully support applied stresses across the 

repaired area. To maintain this required strength the repair plies must overlap, and have adequate bonding 

to the laminates. Two main approaches are currently used: patch (cf. Fig. 1a) and scarf (cf. Fig. 1b). Firstly 

the area where the damage is detected is removed, producing a hole in the composite structure. This hole is 

filled using plies of filler material, and then capped with another series of plies. The scarf joint is more 
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complex to produce but potentially offers and stronger bonded joint and requires less capping plies in 

comparison to the patch repair. 

However composites whether in pristine or repaired state have their challenges which have motivated 

the development of non-destructive testing technique for the detection of flaws within the structure and 

location.  

 
Fig. 1. Composite repair structures 

 

The main disadvantage is the difficulty in detecting damages such as matrix cracking, fiber breakages, 

bond detachment (which may following a patch repair) [4]. The work presented in this paper presents the 

initial stages of testing and modelling to find an effective approach to this problem. The content of the 

remaining sections are as follows: sections two and three present background into the Non-destructive 

methods of testing, specifically acoustic emissions. Sections four and five present background to the Finite 

Element Analysis (FEA) being employed as a guide into guided wave propagation and interaction with 

various damage. Section 6 shows the experimental setup. Section seven presents some initial results with 

section eight shows the initial modelling of the composite plate and section nine summarizing the work and 

identifying areas for future work. 

2. Non-Destructive Testing (NDT) 

A general definition of NDT is an examination, or evaluation performed on any type of test specimen 

without damaging the specimen, in order to determine the presence of discontinuities that may have an 

effect on the integrity of the specimen [5]. A detailed review of  various non-destructive techniques that 

are applied in the detection of flaws in both orthotropic and isotropic materials including the pros and cons 

of each method is given by Cawley [6]. NDT is especially significant in the inspection of components of 

different materials, damage types and orientation. Industries (transport, structural) employ an extensive 

range of NDT techniques and the most common which are referred to as the conventional NDT techniques 

includes liquid penetrant inspection, visual inspection, ultrasonic testing, computer tomography and 

radiography [7], [8]. Several works have been conducted with the application of the different NDT 

techniques on both metals and non-metallic materials such as aluminum, composite materials. The 

application of ultrasonic technique on composite materials with different thickness of Teflon and other 

materials with various thicknesses as inclusion was conducted by Fahr [9] with limited detect ability of the 

embedded materials using various ultrasonic transducer probes and arrays at different frequencies. 

2.1. Acoustic Emission  

Acoustic emission (AE) defined by ASTM E1316-05 [10] as "The class of phenomena whereby transient 

elastic waves are generated by the rapid release of energy from a localized source or sources within a 

material".  The main aim of AE application for this research is to determine experimentally a characteristic 

set (fingerprints) of AE features that can potentially describe the size of circular pocket damage in 
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composite and aluminum plate which has been correlated to finite element models. AE is considered unique 

in contrast to other NDT techniques for several reasons such as; this technique requires the application of 

load on the structure in other to induce the release of lamb waves which is the reverse for other NDT 

techniques. Lamb waves are guided dispersive waves propagating in structures with free boundaries and 

consists of multi-modes of which the lowest mode present in the wave are the Anti-symmetric (A0) and the 

Symmetric (S0) modes in thin plate.  Lamb waves are scattered around damages in several direction and 

the interaction of these Lamb waves with structural damage can significantly influence wave propagation at 

damage location. Changes in the Lamb wave characteristics between the pristine and damaged structures 

can be related to the flaw geometry. This forms the basis behind the use of Lamb-wave based technique for 

damage identification [1]. Fundamental symmetric and anti-symmetric lamb wave mode [11] detection of 

flaws in composite structures over the years has developed with increase in the demand of composite 

materials application. The use of AE in the detection of flaws within structures over the years has attained 

high level of confidence especially in pressure and storage vessels which are highly regulated by the 

authorities [12].  

3. Finite Element Analysis  

Finite Element Analysis (FEA) is a numerical tool that can be used to model complex shapes or structures 

in a way that it can be analyzed with a degree of accuracy. It was initially used for aeronautical design but 

with the increasing development of computers power, the use of FEA has broadened to other discipline [13]. 

There are a number of different FEA programmes available commercially such as NASTRAN, ABAQUS, and 

are applied to solve different engineering problems. This project is focused on dynamic application hence 

an explicit FEA programme is required. The programme used for this project is ANSYS / LS-DYNA. ANSYS / 

LS-DYNA is a single programme packaged with two separate sections. ANSYS is used for the pre and 

post-processing of the model which consists of simply elements and nodes. It is within the programme the 

computer model is generated. Once all the input parameters of the required model such as total number of 

elements, boundary conditions, selected nodes for signal excitation and nodal location for recorded signal 

have been submitted. ANSYS writes an input file for LS-DYNA (Keyword-file). It is this programme that 

performs the FEA and then the results are interpreted by ANSYS. In order to improve the application of the 

FEA input file in investigating the interaction between the propagating signal with flaw. The model 

developed in the work is capable of accurately represent transient elastic wave which propagates at the 

selected frequency. For the chosen wavelength, the element length must provide acceptable time and spatial 

resolution of the propagating transient wave. However this results in a higher computational time for the 

model. 

3.1. Application of FEA 

The FEA simulation is based on the assumption of linear elasticity. The general equation of motion in the 

material is given as:  

  FtKuuCuM                        (1) 

 

M is mass matrix, C is dumpling matrix, K is stiffness matrix, F represents external force vector, u is 

displacement, u  is velocity and, u  is acceleration and t is time. The different parameters of equation (1) 

are solved by the Newmark time integration method [14]. The integration time step size (𝜟t) is critical for 

the convergence of the numerical results. The choice of time step is vital to the accuracy of the results 

obtained, with a time step too large the high frequency component of the wave will not be resolved correctly, 

and on the other hand with too small time step results in excess calculation time and computing resources. 
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The balance between each numerical analysis is achieved by the Newmark time integration approach and 

requires 20 points per cycle of the maximum frequency (𝜟t =1/ 20fmax) and in cases when the resolution is 

not sufficient the time step can be further reduced by 𝜟t =1/180fmax Numerical simulation has been applied 

as a guide into guided wave propagation and interaction with various damage types as reported by several 

researchers. Most of the reports on FEA application are mostly 2-D based for the detection of sharp, round 

and rectangular surface breakages and have been applied at ultrasonic frequencies [15]. 3D FEA modelling 

have also been applied by [15], [16] for the detection of several damage such as delamination, debonding 

and through hole in both isotropic and anisotropic structures and identified a directivity pattern for each 

damage. The paper identifies the use of A0 to characterize debonding in composite structures, useful for 

damage repair analysis. Concludes that the potential application in monitoring both debonding and 

delamination of structural components and improved maintenance time will be of huge benefit. Similarly 

the approach was applied in the validation of steel plate rusted section and correlated with a plate tester 

device used for detecting rusts in steel pipes.  

The aim of applying the FEA simulation is to both to understand and compare experimentally obtained 

results of guided AE wave propagation. 

4. Setup and Experimental Procedure 

As a starting point a series of 500mm square plates have been manufactured in aluminum and composite. 

To replicate damage in these panel a series of 1mm deep blind round pockets have been machined. Fig. 2 

shows the engineering drawing for one of the plates. In this instance with a 30mm diameter blind pocket, 

potentially replicating a flaw in the form of a bad patch repair as shown in Fig. 1. 

 

 
Fig. 2. Test plate design 

 

AE sensors are used to measure the mechanical displacement of the transient wave propagating in the 

structure and converted to electrical signal. All captured signal were further amplified to limit the effects of 

wave attenuation. Signal processing tools were used to analyses the recorded events of all specimens. The 

excitation was performed using a pencil lead break. The events were recorded using LabVIEW®  software 

provided by Gage applied instruments. The package is a graphical user interface (GUI) program written in 
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LabVIEW®  to record AE events. The raw signal was recorded in amplitude and time with signal threshold 

trigger setting of 0.02v for all recorded AE events. All raw signals from each sensor due to attenuation and 

electromagnetic interference was amplified with a Vallen system AEP4H amplifier of 40dB and a frequency 

response of 20KHz-3MHz before transmitted. Each preamplifier was connected to a laptop PC via a 

laboratory built differentiator supply. The Gage®  Octopus CompuScope CS-8280 data acquisition card 

records at a sample rate of 5MS/s, 12 bit vertical resolution and 100MHz bandwidth. The card was 

threshold triggered, with one channel allocated as the trigger channel which triggers the recording of all 

channels simultaneously. The card has 128 MB in built memory and the system was set to record 3500 data 

points for each recorded event.  All recorded events were data points with corresponding amplitude of the 

raw signal and transferred to the laptop PC with LabVIEW®  via data cables connected to the data 

acquisition card where recorded data and stored in text file format for further processing. 

 
 Signal processing and Experimental apparatus  

 
Fig. 3. Experimental apparatus 

 

5. FEA Setup 

The application of FEA for lamb wave propagation and interaction with flaws in an isotropic material was 

simulated using a 3-D explicit finite element method (as described in section 3). 

An eight node 3-D solid brick element with hourglass control was used in the model, with six degrees of 

freedom (DOF) (x, y, z translational and rotation) at each node and the sensor layout of the FEA model was 

same as shown in Fig. 4. The dimensions of the model was 250×250×2.2mm3, which was further split into 

eight plies through the thickness with a depth of 0.275mm per ply. The A0 mode lamb wave was excited by 

applying an out of plane nodal displacement in z-axis normal to the surface of the model at the bottom end 

of the model Fig. 4 located at x=125mm, y=0, z=2.2mm.  
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Fig. 4. FEA model 

 

To accurately characterize the scattering phenomena of Lamb waves after interaction with damage, some 

key factors has to be taken into account when building the Finite Element model: 

 A very fine mesh, featuring at least 8-12 nodes per Lamb wavelength, which is a prerequisite to 

deliver good spatial accuracy; 

 Models have to be divided into sub-layers through the thickness  

 The time step for dynamic calculation must be less than the ratio of the minimum distance of any 

two adjoining nodes to the maximum wave velocity [11]. 

The wavelength of the A0 lamb wave mode was about eight mm which is the smallest at the selected 

frequency of 150 KHz which was determined from λmin = Cp/f. Most of the brick elements had in-plane 

square shapes with dimension 0.5×0.5mm2 with very fine mesh which guarantees at least 16 nodes exists 

per wavelength of the propagating wave mode [17] for wave propagation in FEA simulations determined 

from le=λmin/20, the shortest wavelength of the selected wave mode which has been determined from the 

phase and group velocity graphs of aluminum (cf. Fig. 5 a and b). A study of element size was conducted and 

the results showed that the application of a calculated 0.4mm cude as compared to 0.5mm element length 

had no effect on the obtained results. 

 

 
Fig. 5a. Phase and 5b. Group velocity graphs of aluminum 
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The total number of solid brick elements is about 1.9 million and require about four hours to solve each 

model. Fig. 6a and 6b shows the FE out-of-plane displacement of the A0 mode interaction with the model 

showing both the pristine model and a model with Ø50mm pocket. 

 

 
Fig. 6a. and b. Wave propagation in pristine and 50mm specimen 

 

 

Fig. 7. Modulated hanning windowed tone burst pulse 

 

The Excitation of the A0 mode lamb wave and the interaction of the wave was modelled with an aluminum 

plate as shown in Fig. 2 it was determined that due to the length of time and memory required the model 

was reduced to consist of the main area of examination. Modulated Hanning windowed tone burst pulse and 

the frequency domain after Fourier transform of the input signal can be seen in Fig. 7. The effects of 

reflection from the boundary can be eliminated by considering the wave propagation speed and time. All 

models had fixed boundary conditions at left and right sides (all DOF constrained), results were obtained at 

locations which coincide with the sensor location of the actual experiments and the sensor coordinates. 

6. Results 

The results obtained for all experiments are presented in this section. The selected wave features for 

event were maximum peak amplitude, Time of Flight (TOF) of both reflected and transmitted signals, and 

normalized transmitted and reflected signal.  The reflected and transmitted signal was normalized by the 

incident signal (peak amplitude of sensor one). 

6.1. Attenuation  

A study on the signal attenuation of aluminum plate was conducted with the HN pencil lead, the AE 

source and the distance between the sensor and the source was increased with step of 50mm hence the 

maximum distance from the sensor to source was 250mm.  The results obtained shows the attenuation in 

amplitude (dB) against the distance Fig. 8, it can be seen that the losses with increase in the propagation 

distance is very small and the attenuation results provided an insight for maximum sensor placement and 

minimum signal losses in terms of the signal strength. The results show a linear decay with distance. For the 

signal to decay below the threshold level (35dB, 0.02v) in the aluminum plate it would take several meters. 
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Therefore the test setup is still valid. 

 

 
Fig. 8. Attenuation determination of all six sensors  

 

6.2. FEA Model 

The incident signal as well as the both the reflected signal from ‘damage’ and boundary are captured for 

the duration of numerical study. But since the time at which each occurs can be determined theoretically, 

the boundary reflected signal can be gated out. This allows for damage reflected signal to be completely 

captured. From the FEA model results for sensor locations, 2 and 3 as well as 4 and 6 were symmetrical (cf. 

Fig. 2), hence only sensors 1, 2, 4, and 5 will be used for identification of damage/ poor repairs. The 

obtained signal at sensor 1 location clearly shows the incident wave and the reflected signal from both the 

boundary as well as the flaw can be seen in Fig. 9. 

 

 
Fig. 9. Incident and reflected signal from pocket and boundary 

 

The results for sensor 2 is identical for all models, this was further investigated. From the visualization 

(propagating signal animation) of the propagating signal it was noticed that the size of the model limits 

further analysis of sensor 2 at this present stage. The reflected and transmitted signal strength is plotted as 

a percentage of the incident signal for sensor 1 and 5 ((reflected signal/incident signal)*100).  

6.3. Discussion of Reflected Signal off Pocket at Sensor 1 

In order to completely extract the reflected signal from the captured signal, baseline subtraction was 

achieved by applying equation 2: 

 

                            u(s)r,θ = u(d)r,θ (t) – u(u) r, θ (t)                               (2) 
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The obtained signal before subtraction is shown in Fig. 9 from which the incident, pocket and boundary 

reflected signals can be clearly identified. Fig. 10 is the subtracted signal with different pocket diameter of 

32 and 48 mm. It was expected that an increase in pocket diameter will result in an increase in the peak 

amplitude in reflected signal strength. Fig. 11 shows the plot of reflected peak amplitude (%) against the 

diameter to wavelength ratio for all FEA models. 

 

 
Fig. 10. Reflected signal 

 

From analyzing Fig. 11 it is clearly seen that with increase in pocket diameter there is an almost linear 

increase in the reflected signal strength. This shows that with increase in pocket diameter there is expected 

to be increase in the strength of reflected signal. This can be used to as an indication of damage in signal 

propagating path also as a tool for checking patch repairs and bonded parts.  

 

 
Fig. 11. Reflection peak amplitude of FEA simulation 

 

6.4. Discussion of TOF for Reflected Signal off Pocket at Sensor 1 

Fig. 12 shows the time of flight (TOF) of the reflected signal plotted against diameter to wavelength. For a 

pristine test specimen the TOF is zero as there is expected to be no reflected signal except the boundary of 

the model. The linear reduction in the TOF with increase in the pocket diameter shows that the above result 

can be applied in damage detection in the propagating signal path. Consequently if the pocket diameter is at 
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the sensor location the incident and damage reflected signal will suppose hence care and caution should be 

taken when sensors are placed. However the difference between the theoretically calculated TOF and FEA 

simulation ranged from 11-20%. The difference can be identified as a result of the change in element shape 

at the region of damage which is not completely spherical. The minimum and maximum TOF difference 

observed for pocket diameter 50 and 16mm respectively.  

 

 
Fig. 12. TOF of reflected signal of FEA model 

 

6.5. Discussion of Transmitted Signal Pass Pocket at Sensor 5 

From the transmitted signal strength it was expected that due to the reduced thickness in the path of 

propagation (damage/pocket location) this will result in an increase in the amplitude measured at sensor 5. 

Fig. 13 shows a plot of the transmitted peak amplitude (%) against diameter and wavelength ratio. It was 

noticed that with increase in D/λ (increase in damage diameter) there is consistent drop in the transmitted 

energy). A complete reverse in the transmitted energy trend is noticed for damage diameter greater than 

four times the wavelength (Ø32mm). A constant increase is observed for damage diameter greater than 

32mm. The complex interaction of the propagating signal above and the creeping signal around the pocket 

probably been in-phase will result in the increase observed at 32mm pocket diameter and beyond. 

 

 
Fig. 13. Transmission peak amplitude of FEA model 
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6.6. Discussion of TOF of Transmitted Signal Pass Pocket at Sensor 5 

The TOF at sensor 5 pass pocket is affected by the presence of the pocket as well as the diameter of 

pocket (cf. Fig. 14). These will most likely result in a delay in the TOF of the transmitted signal, with 

increase in pocket diameter the signal was expected to take long to be recorded at sensor 5. 

 

  
Fig. 14. Time delay of transmitted signal with the pristine and pocket diameter 24mm models  

 

Fig. 15 illustrates the TOF of the selected A0 mode with to damage size for different FEA models. The TOF 

shows slight increase for damage diameter 16 through to 24mm, after which a gradual reduction in the TOF 

for higher pocket diameter. This is as a result of the reduction in the thickness at the region of damage. With 

reduced thickness there is reduction in internal friction which will result in the signal propagating faster at 

this region. 

 

 
Fig. 15. TOF of transmitted signal for different FEA models 

 

7. Comparison of Result 

The results found from the experimental work and FEA were compared. The following plot shows the 

difference in selected sensors for comparison. For aluminum plate, sensor 2 record the same values in all 
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simulations, therefore sensor 2 was selected. For both experimental test and FEA simulations, Sensor 1 and 

5 were selected because sensor 1 directly in front of damage and the later was in directly behind the pocket. 

Also the reflected signal from damage could not be clearly identified in the experimental work hence sensor 

1 was not used for comparison. Fig. 16 shows the transmitted peak amplitude plot for both experiment and 

FEA test with same test configuration.  
 

  
Fig. 16. FEA and experimental result comparison of transmission ratio and FEA and experimental result of 

transmitted signal TOF 

 

The results obtained from the FEA and the experimental work shows very clear trend when comparing 

the transmission ratio in both case. From the FEA results it is observed that for pocket diameter greater 

than about 3.75 times pocket diameter there is an increase in the transmitted signal. The losses at pocket 

diameter of 30mm is about 30.2% when compared to the gain in transmitted signal strength of 40.1% for 

pocket diameter of 50mm. The recorded gain and loss could not be identified completely at the time of 

writing the paper but a possible explanation is the in or out of phase interaction of the propagating signal 

pass damage. The TOF of transmitted signal for the experimental test is less than the FEA recorded TOF. 

This is as the FEA was conducted with excitation of A0 mode which propagates at a lower velocity than the 

S0 mode as recorded in the experimental test. It can be seen that the TOF of the reflected signal directly 

decreases with increase in pocket diameter. The minimum and maximum TOF recorded for the FEA model 

was for pocket diameter of 50mm and 24mm. While for the experimental test the minimum and maximum 

recorded was for 50mm and 30mm pocket diameter. The recorded signal pass pocket is split into two main 

propagating signals, the top propagating and creeping signal over and around the pocket. The TOF of the 

transmitted signal can also provide a good indication as to the presence of damage and its size. 

8. Initial Composite Modelling 

With favorable results produced for the aluminum plate. At the time of writing this paper initial FEA 

modelling has been conducted on the composite variant of the test plates (cf. Fig. 17). 
 

 
Fig. 17. Composite model (underside and top wired view)  
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By modelling the pocket and from the aluminum plate work it was noticed that there are two reflected 

signal which includes the first reflected (Incident reflected) and the second (creeping or circumferential) 

signal. The first reflected signal is the reflection of the incident signal after pocket interaction, while the 

creeping signal is the reflected signal upon complete interaction with circular groove.  Example of pocket 

reflected signal which includes the first and second reflected are shown in Fig. 18. 

 

   
Fig. 18. Incident and reflected signal at sensor 2 (FEA study) 

 

 
Fig. 19. Incident, first reflected and creeping signal 

 

The creeping signal superimpose with the trailing end of the first reflected signal. This interaction results 

in an obvious increase in the duration of the reflected signal. Example of the components reflected signal 

visualization from the FEA study is shown in the Fig. 19. For all flaw size these waves are present and can 

clearly be identified from simulations. The identification of the creeping wave is dependent on the flaw size 

in the material, as with very small flaws it is not clearly seen as the speed of the propagating signal 

wavelength completely interacts with damage size. 

9. Conclusion 

Currently the technologies to effectively recycle or remanufacture composites are not economically viable. 

Therefore there is an interest in assessing the successfulness of repairs to composite components. 

Obviously if this component is in use the assessment must be non-destructive in nature. The interactions of 

AE signal with a circular pocket (potential damage - debonding etc.) have been investigated and reported in 

this paper. The findings can be summarized as follows: 

 The use of pencil lead break for AE excitation induces both the fundamental lamb wave modes which 

limit result comparison. For instance the TOF of FEA with an A0 mode and experimental result of S0. 

 Pencil lead results in variations in the energy, frequency content of the induced signal thereby adding 

complexity to an already complex system. 
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 The FEA visualization provided a great understanding of the propagating signal interaction at the 

‘damage’ area. This allowed the identification of both creeping and top half propagating signal. 

 Reflected peak amplitude for all models is a parameter that can be used for damage sizing as from the 

results. It is clearly seen that the reflected signal strength increases with increase in pocket diameter. 

 Both TOF of the reflected and transmitted signals are good indication of damage and extent of flaw. 

These signal features can as well be applied not just for damage detections but also in the checking of 

patch repair quality.  

9.1. Future Work  

The initial results are promising enough to continue with the work. The tasks for the future of this project 

are: a 2-D study of the interaction of the transmitted signal. The investigation will be continued with similar 

flaws on an industrial CFRP plate. It may also be useful to investigate different geometries of repair, to see if 

there is any potential to characterize the actual mode of weakness within the repair zone. Due to perceived 

limitation in the HN source method, an application of A0 guided wave as against the present HN source 

needs to be conducted. 
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