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Abstract: The condition of the oil-impregnated paper is an essential point of life diagnostics for a power 

transformer. The degree of polymerization (DP) of paper insulation is considered as a good indicator for the 

determination of the deterioration level of the insulation paper that indicates the remnant life of the 

transformer. In these years, researchers have been able to implement classification analysis methods on a 

power transformer through a database of measurement data. Further studies related to the development of 

machine learning for the assessment of power transformers must be accomplished in order to formulate a 

comprehensive model. 

The objective of this paper is to develop a reliable algorithm to determine the current state of the oil-paper 

insulation based on the monitoring characteristics. With nominal classification base and numerically base 

using Fuzzy Inference System (FIS) and Back Propagation Neural Network (BPNN), and study its behavior. 

Both methods evaluate dielectric characteristic parameters, i.e., acidity and interfacial tension (IFT), of the 

insulating oil, and dissolved gas analysis (DGA) measurement results; the concentration of carbon monoxide 

(CO) and carbon dioxide (CO2), and four possible combinations variable input. 

This paper describes the structure of FIS and BPNN and gives a comparison of both methods to the 

performance to data sets of a real transformer fleet. The result shows that both models can be used to predict 

the value of DP accurately and to improve the reliability of the result.  

 
Key words: Transformer, degree of polymerization, dissolved gas, dielectric characteristic, FIS, back-
propagation neural network.  

 
 

1. Introduction 

Transformer is generally known as key electrical equipment [1]. It is of high importance to estimate the 

transformer condition precisely to avoid unwanted outages of the transformers. Because the unexpected 

failure of a transformer unit also involves high consequential costs [2]. If a defective transformer is part of a 

distribution system, the customer will be left without power. The cost of replacing the transformer itself is 

high, but the resultant cost can be considerable, potentially approaching a few time the cost-price for the 

transformer.  
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To increase of the availability of transformers, failures need to be detected at their initial stages. The 

condition of the transformer insulation determines the remaining life of the asset [3]. Various methods for 

artificial intelligence implementation have been proposed for estimating the condition of transformer or the 

Degree of Polymerization, i.e. Machine Learning based CO2 & Acidity [4], Fuzzy method based IFT and Acidity 

[3], Fuzzy method based CO & CO2 [5], ANFIS model based fault diagnosis [6], ANFIS to RSME comparative 

based DGA data [7], Support Vector Machine (SVM) based Oil measurement [8] and the newest is DP 

estimation with FIS based on ID3 algorithm decision tree [9]. 

In this paper, the objective is to develop a reliable algorithm to determine the current state of the oil-paper 

insulation based on the monitoring characteristics with nominal classification base and numerically base 

using FIS and BPNN, and study its behavior. Both methods evaluate dielectric characteristic parameters, i.e., 

acidity and interfacial tension (IFT), of the insulating oil and dissolved gas analysis (DGA) results; 

concentration of carbon monoxide (CO) and carbon dioxide (CO2), and four possible variable combinations. 

2. Methodology 

 Data Preparation 

The data provided in this research originally came from measurement data of oil insulation from Schering 

Institute Laboratories-Leibniz University of Hanover (as a training data), and measurement data of post 

mortem (PM) oil insulation, samples of an service company (as a test data). 

The data input is limited to measurement data of Acidity and IFT, due to the acidity and the IFT value are 

quite appropriate indicators to determine the condition of the insulation paper [10]. And the concentration 

of CO and CO2, as these variables have the greatest correlation with the Degree of Polymerization value [9] 

 Fuzzy Inference System 

Fuzzy inference is the process of formulating the mapping from a given input to an output using fuzzy logic 

[11]. The process of fuzzy inference involves membership function (MF), logical operation and If-Then rules. 

The inference process consists of the following steps: 

a. Fuzzification. 

b. Degree of activation 

c. Implication 

d. Aggregation 

e. Defuzzification 

The rule, generated through C4.5 algorithm decision tree, are implemented in the fuzzy inference system. 

The full description of this process is provided in the Fig. 1: 
 

 
Fig. 1. Fuzzy inference system process. 

2.2.1. C4.5 Algorithm Decision Tree 

The decision tree algorithm builds a flowchart-like mechanism where each internal node denotes an 
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attribute test, each branch corresponds to the test result, and each external (leaf) node denotes a class 

prediction. These systems are supported by several cases, each being in the same small categorize, that are 

described by their values for a specific set of attributes and provide a classifier that can predict the class to 

which a new case belongs [12]. 

C4.5, an extension of ID3, is a well-known decision tree algorithm to select the best attribute for 

classification [13]. C4.5 algorithm uses Gain Ratio while ID3 uses Information Gain. With the same procedure, 

C4.5 Algorithm calculates the Entropy (S) and the Information Gain (S,A), Splitting info (S,A) and Gain Ratio 

(S,A). 

𝐸 (𝑆) = − ∑ 𝑝𝑖 ∙ 𝑙𝑜𝑔2 𝑝𝑖
𝑛
𝑖=1                                   (1) 

 

𝐺𝑎𝑖𝑛 (𝑆, 𝐴) = 𝐸(𝑆) − ∑
|𝑆𝑖|

|𝑆|
∙ 𝐸(𝑆𝑖)

𝑛

𝑖=1
                             (2) 

 

𝐺𝑎𝑖𝑛 𝑅𝑎𝑡𝑖𝑜 (𝑆, 𝐴) =
𝐺𝑎𝑖𝑛 (𝑆,𝐴)

𝑆𝑝𝑙𝑖𝑡 𝐼𝑛𝑓𝑜 (𝑆,𝐴)
                                 (3) 

 

𝑆𝑝𝑙𝑖𝑡 𝐼𝑛𝑓𝑜 (𝑆, 𝐴) = − ∑
|𝑆𝑖|

|𝑆|
∙ 𝑙𝑜𝑔2

|𝑆𝑖|

|𝑆|

𝑛

𝑖=1
                               (4) 

 

where: 

𝑝
𝑖
 = frequentist probability of an element/class i. 

S = Collection of training examples 

A = Attribute 

|𝑆𝑖| = Number of elements in 𝑆𝑖  

|𝑆| = Number of elements in 𝑆  

i = All the possible values of the attribute 

 
Fig. 2. Membership function of fuzzy system. 
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2.2.2. Membership Function 

Membership function is constructed from symmetrical triangle curve on which assigned to condition class 

of each variable. Membership functions allow us to represent a fuzzy set graphically. The x-axis represents 

the value of the variable, whereas the y-axis represents the degrees of membership in the [0,1] interval. 

Membership function curve of this research shown in Fig. 2, is based on the standard as follows: 

a. IEC Std. 60422:2013 for Breakdown Voltage, Acidity, and Interfacial Tension. 

b. IEEE Std. C57.104:2008 for CO and CO2 

c. IEC Std. 60450:2007 for Degree of Polymerization. 

 Back Propagation System 

The input information spreads to hidden layer nodes and is calculated by Sigmoid activation - the output 

information from the hidden layer nodes distributed to the output layer nodes. If the output layer cannot 

provide the preferred output value, return the error signal between the actual value and the desired output 

value along the original connection path. 

2.3.1. Data Normalization 

Before the training process is carried out, the data must be normalized. Normalization is to change the 

values of numeric data in the dataset to use a common scale, without distorting differences in the ranges of 

values or losing information. In this step, the data will be normalized into the range 0.1 to 0.9 using the 

equation: 

𝑋′ =
0.8(𝑋−𝑏)

(𝑎−𝑏)
+ 0.1                                    (5) 

where: 

𝑋′ = normalized data 

𝑋  = original data / initial data 

𝑎  = the maximum value of the original data 

𝑏  = minimum value of original data 

 

2.3.2. Architecture of BPNN 

The architecture used in the data training process uses a neural network with two hidden layers. The first 

hidden layer contains four neurons, and the second hidden layer contains three neurons. The architecture 

provided in the Fig. 3. 

 
Fig. 3. Architecture of training neural network. 

 

Initial weight and bias parameters are determined to the same value in order to obtain a similar training 
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process to achieve balanced treatment for each combination input. Weight and bias values are obtained from 

the best training process, with four variables in the training process. These weights and biases are as follows: 

Weight value from input to hidden layer 1: 

𝑤𝑖𝑗 = [

0.040959 0.8357
−0.099996 1.5659

0.94896 1.2494
−3.1865 −0.89014

1.1885 −0.87322
0.49817 −0.9258

1.0287 −1.4767
0.010561 −1.5137

] 

 
Weight value from input to hidden layer 2: 

𝑤𝑗𝑘 = [
1.3919 

−0.73053 
0.81115 

1.1426
1.5742

−1.8702

−0.21703 
−0.42707 

1.1144 

−0.27904
0.56075

−0.64249
] 

 
Weight value from input to output: 

[𝑤𝑘𝑖 = −0.32446 −1.3657 −2.0853] 
 

Bias value for each layer: 

𝑏𝑖 = [

−1.9974
0.12593
1.6932
2.1984

] 

𝑏𝑗 = [
−2.0225

−0.69793
1.5575

] 

𝑏𝑘 = [−0.093792] 

In MATLAB, the neural network is trained for a given iterations number to verify the validity and 

performance of the network model. The model training process ends when the number of iterations has been 

reached, there is a lack of validity or the satisfaction of performance criteria. The performance curve of 

training regression is shown in Fig. 4 below. 
 

 
Fig. 4. Performance curve regression training via MATLAB. 
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 Evaluation Method 

This research has 3 (three) types of evaluation methods to know the performance of the estimation of each 

instance. The evaluation methods are based on DP class rate estimation, based on DP value deviation, and by 

Mean Absolute Error (MAE). 

2.4.1. Evaluation based on DP estimated class 

The outcome of both methods is evaluated by comparing the estimated DP class result with the actual DP 

class, which is defined by the IEC 60450. If the class estimation result is the same as the actual DP class, it is 

evaluated as “precise”. If the estimation result is one class that varies above or below the actual DP class, it is 

graded as “close”. If the estimation result is different in two classes above or below, it is evaluated as 

"Incorrect." 

2.4.2. Evaluation based on DP value 

In this assessment method, the estimation result is evaluated by deviation or error of the estimated DP 

from the actual DP measurement according to the criterion in Table 1. 
 

Table 1. Evaluation Criterion by DP Value Error/Deviation 

No. DP value deviation Evaluation 

1 DP deviation < 75  Precise  

2 75 ≤ DP deviation ≤ 150  Close  

3 DP deviation > 150  Incorrect  

 

2.4.3. Evaluation using MAE 

Estimation result in this research is evaluated by Mean Absolute Error (MAE) to measure the accuracy, 

because MAE is the most natural measure of average error magnitude and give unambiguous measure of 

average error magnitude [14]. The MAE are calculated for the data set as: 
 

 

(6) 

where 

yi = prediction 

xi = true value 

3. Result and Discussion 

 C4.5 Decision Tree 

 

 
Fig. 5. Gain Ratio for each input variable 

 

The calculation method for developing the decision tree that has been presented above gives the Gain Ratio 

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑥𝑖|𝑛

𝑖=1

𝑛
=

∑ |𝑒𝑖|𝑛
𝑖=1

𝑛
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value for each variable input, as shown in Fig. 5. 

IFT has the highest gain ratio with 0.4522 against the other variable, so IFT becomes the root of the decision 

tree. The further step is to divide the data based on the IFT as a root of the tree. The classification of IFT divide 

into 3 (three) classes; there are Good, Fair, and Poor. Then, calculate the Gain Ratio of each group of data to 

find out the highest Gain Ratio for each class of IFT Condition. Then divide the new groups into smaller groups. 

This process should be performed till pure groups are reaches which cannot be divided into a purer group. 

The Decision tree is shown in Fig. 6. 
 

 
Fig. 6. Decision tree C4.5 algorithm. 

 

Table 2. Fuzzy Rule Sets 

Rule Expression 
1 If IFT is Good, CO is Con-1, and Acidity is Good then DP is New 
2 If IFT is Good, CO is Con-1, and Acidity is Fair then DP is Good2 
3 If IFT is Good, and CO is Con-2, then DP is Good2 
4 If IFT is Good, and CO is Con-3, then DP is Good2 
5 If IFT is Good, CO is Con-4, and Acidity is Good, then DP is Good1 
6 If IFT is Good, CO is Con-4, Acidity is Fair, then DP is Average1 
7 If IFT is Fair, and Acidity is Good, CO2 is Con-1 then DP is Good2 
8 If IFT is Fair, and Acidity Good, CO2 is Con-2 then DP is Good1 
9 If IFT is Fair, and Acidity Fair, and CO2 is Con-2 then DP is Good1 

10 If IFT is Fair, and Acidity Fair, CO2 is Con-3 then DP is Average2 
11 If IFT is Fair, and Acidity Poor, CO2 is Con-3 then DP is Average2 
12 If IFT is Fair, and Acidity Poor, CO2 is Con-4 then DP is Average1 
13 If IFT is Poor, CO2 is Con-1, and Acidity Fair then DP is Average2 
14 If IFT is Poor, CO2 is Con-1, and Acidity Poor then DP is Average1 
15 If IFT is Poor, CO2 is Con-2, then DP is Average1 
16 If IFT is Poor, CO2 is Con-3, and Acidity Fair then DP is Average1 
17 If IFT is Poor, CO2 is Con-3, and Acidity Poor then DP is Aged2 
18 If IFT is Poor, CO2 is Con-4, then DP is Aged1 

 

The colored orange parts are based on expert decisions due to the limited number of training data and to 

accommodate classes that are not covered. From C4.5 tree in Figure above, generate out 18 rules to control 
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the fuzzy logic as shown in the Table 2. The rule are implemented in the fuzzy inference system. 

The estimation results from the two algorithm method discussed above, the FIS estimation system and the 

Back Propagation Neural Network estimation system, will be evaluated. How much is the deviation/error 

between the actual data and the predicted data from the DP value, and the accuracy in determining the class 

category. 

 FIS Estimation Result 

The performance of the FIS estimation system to estimate 20 data sets of post mortem (PM) insulation data 

can be seen in the Table 3 below. 

Table 3. FIS Estimation Result for Testing Data 

Name 
DP 

Actual 
DP 

Estimation 
Deviation 

Class DP 
Actual 

Class DP 
Estimation 

PM0 705.00 848.76 143.76 Good Good 

PM1 765.00 662.29 102.71 Good Good 

PM2 1,192 1,029 163.00 New New 

PM3 910.00 1,029 119.00 Good New 

….. ….. ….. ….. ….. ….. 

….. ….. ….. ….. ….. ….. 

PM14 1,008 921.51 86.49 New Good 

PM15 1,004 924.49 79.51 New Good 

PM16 898.00 924.49 26.49 Good Good 

PM17 925.00 1,029 104.00 Good New 

PM18 1,182 1,029 153.00 New New 

PM19 925.00 880.54 44.46 Good Good 

Max. Deviation 164.34 
Accuracy 75 % 

MAE 81.28 

 

Table III show the result of the estimation, with maximal deviation/error estimation is 164.34, MAE 81.28, 

and accuracy class estimation is 70%. 

 

 
Fig. 7. Evaluation for FIS estimation result. 

 

Fig. 7 show the evaluation by deviation provide accuracy 45 % “precise”, 35 % “close”, 20 % “incorrect”. For 

evaluation by DP class estimation, the accuracy is 75 % “precise”, 25 % “close”, and there is no evaluation as 

incorrect. 
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 BPNN Estimation Result 

The performance of the BPNN estimation system to estimate 20 data sets of post mortem (PM) Insulation 

data can be seen in the Table 4 below.  

Table 4. BPNN Estimation Result for Testing Data 

Name DP Actual DP Estimation Deviation Class DP Actual Class DP Estimation 

PM0 705.00 864.81 159.81 Good Good 
PM1 765.00 848.87 83.87 Good Good 
PM2 1,192 1,002 189.60 New New 
PM3 910.00 906.60 3.40 Good Good 
….. ….. …. …. …. …. 
….. ….. …. …. …. …. 

PM14 1,008 1,036 28.33 New New 
PM15 1,004 866.62 137.38 New Good 
PM16 898.00 866.17 31.83 Good Good 
PM17 925.00 999.81 74.81 Good Good 
PM18 1,182 956.82 225.18 New Good 
PM19 925.00 879.91 45.09 Good Good 

Max. Deviation 247.30 
Accuracy 75 % 

MAE 105.63 

 

Table IV show the result of the estimation with BPNN, with maximal deviation/error estimation is 247.30, 

MAE 105.63, and accuracy class estimation is 75 %. 

 

 
Fig. 8. Evaluation for BPNN estimation result. 

 

 
Fig. 9. Comparison evaluation for PM estimation result. 
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BPNN system shown in Fig. 8 determines an estimation of PM insulation data. The performance is 50 % 

“precise”, 15 % “close” and 35 % “incorrect” evaluated by deviation.  Accuracy 75 % “precise”, 25 % “close”, 

and no “incorrect” assessed by class estimation result.  

Fig. 9 show the representation of the evaluation comparison for post mortem (PM) oil insulation data 

estimation result. 

4. Conclusion 

In the above-shown investigations, different methods have been developed in order to automatically 

analyze the condition of the paper insulation of power transformers based on oil parameters 

The C4.5 algorithm performs better at developing an acceptable outcome hierarchical structure in the 

process of creating a decision tree that allows users easily to add artificial decisions for experts when required. 

FIS systems tend to be better at estimation performance for comparison between FIS and BPNN estimation 

result. Moreover, BPNN accuracy in estimating DP value is lower than FIS; this is demonstrated by the number 

of maximal deviation and Mean Average Error. 

In this research, a comparison of the BPNN estimation system is also made with a combination of three 

input variables. The result show that the IFT variable has the highest impact to achieving improved 

estimation accuracy. This observation in line with the C4.5 algorithm that presents IFT as the root in the 

decision tree.  

Further investigations could be carried out using more data and used the transformer’s field data, with the 

integration of multiple architectures of the neural network to get higher accuracy of estimation. 
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